
GFD-E.103 Peter Tröger, Hasso-Plattner-Institute
Becky Gietzel, University of Wisconsin-Madison

Distributed Resource Management
Application API (DRMAA) Working Group
 2/22/2007

Condor DRMAA 1.0 Implementation – Experience Report

Status of This Document

This document provides information to the Grid community about the adoption of the OGF
specification GFD-R-P.022 in the Condor workload management system. It does not define
any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract

This document describes experiences in the implementation of the Distributed Resource
Management Application API (DRMAA) specification for the Condor workload management
system. The document reports about issues that where identified during implementation
and test of a DRMAA C library for Condor, which was evaluated successfully with the
DRMAA working group compliance test for C bindings. We will give suggestions for
improvement of the specification, mainly concerning readability of the GFD-R-P.022
specification document.

Contents

1 Introduction... 2
2 The Condor DRM System ... 2

2.1 Implementation of the Condor DRMAA Library.. 3
2.2 Integration Overview .. 3

3 DRMAA Compliance Test ... 6
3.1 Test protocol ... 6

4 Conclusion.. 8
5 Security Considerations .. 8
6 Contributors .. 8
7 Intellectual Property Statement... 8
8 Full Copyright Notice ... 9
9 References ... 9

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 2

1 Introduction

The Distributed Resource Management Application API specification (GFD-R.P.022) [1]
specifies a generalized API to distributed resource management systems (DRMS) in order to
facil itate integration of application programs. Soon after DRMAA reached "proposed
recommendation" status, various DRM vendors and Grid community-oriented projects
started implementing DRMAA language bindings. Today, there are implementations for
DRM systems (Sun Grid Engine, Condor, Torque) as well as different languages (C, Java,
Perl, Python).

This document reports about experiences in the implementation of a DRMAA C library for
the Condor workload management system.

2 The Condor DRM System

Condor is a specialized workload management system for compute-intensive jobs. Like
other full-featured batch systems, Condor provides a job queuing mechanism, scheduling
policy, priority scheme, resource monitoring, and resource management. Users submit their
serial or parallel jobs to Condor, Condor places them into a queue, chooses when and
where to run the jobs based upon a policy, carefully monitors their progress, and ultimately
informs the user upon completion.

While providing functionality similar to that of a more traditional batch queuing system,
Condor's novel architecture allows it to succeed in areas where traditional scheduling
systems fail. Condor can be used to manage a cluster of dedicated compute nodes (such as
a "Beowulf" cluster). In addition, unique mechanisms enable Condor to effectively harness
wasted CPU power from otherwise idle desktop workstations.

Condor can be used to build Grid-style computing environments that cross administrative
boundaries. Condor's "flocking" technology allows multiple Condor compute installations to
work together. Condor incorporates many of the emerging Grid-based computing
methodologies and protocols. For instance, Condor-G is fully interoperable with resources
managed by Globus.

Condor is the product of the Condor Research Project at the University of Wisconsin-
Madison (UW), and was first installed as a production system in the UW-Madison Department
of Computer Sciences nearly 15 years ago. This Condor installation has served since as a
major source of computing cycles to UW-Madison faculty and students. According to usage
statistics on a typical day, Condor delivers more than 650 CPU days to UW researchers.
Additional Condor installations have been established over the years across the UW-campus
and the world. Hundreds of organizations in industry, government, and academia have used
Condor to establish compute installations ranging in size from a handful to up to over one
thousand workstations.

The Condor system is distributed under the Condor public license, version 1.1 (October 30
2003) [2].

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 3

2.1 Implementation of the Condor DRMAA Library

The first version of the Condor DRMAA library was released with Condor 6.7.0, in April 2004.
Nicholas Geib, a member of the Condor project team, implemented most of the specified
DRMAA functionality. His work was based on the GFD-R-P.022 document, as well as on the
DRMAA C language binding v0.9 specification. The nearly complete feature set of this
library version enabled the first DRMAA programming tutorial at GGF 12 [3].

From October 2005, Peter Tröger finalized the Condor DRMAA library in a SourceForge
project, under consideration of the latest DRMAA C language binding v1.0 specification
[4]. The resulting fully DRMAA-compliant library version was released with Condor 6.7.14.

It is the general impression of the Condor DRMAA authors that the DRMAA specification is
explained in great detail and with a clear focus on implementation issues and semantic.
The successful DRMAA compliance test clearly proves the overall validity of the
specification document. However, during detailed implementation work, some specifi c
issues were identified, which are explained in the following sections. We give suggestions
for according improvements of the spec.

2.2 Integration Overview

The integration of a job submission and monitoring API in Condor demanded a decision for
the coupling approach to the Condor system daemons. As many other Condor-based tools,
the DRMAA library utilizes the Condor command line tools for job submission and partially
for status querying. While Condor does not provide an own steering API, it ensures
parameter input and output compatibility between different Condor versions with a special
format flag. It supports single and bulk job submission, which ensures that for each possible
DRMAA job submission scenario there is only one condor_submit call needed.

Most of the monitoring information is taken from the job log file, which is situated on the
submission host, written by the Condor condor_schedd daemon. The Condor library takes
nearly all information about job status, error conditions, resource usage and job-related
events from these files. There are only a few special cases where the command line
monitoring tools (condor_q, condor_status) must be also considered.

A) Pluggability Concept
The Condor system has the concept of ‘job universes’ [5]. A universe describes a class of
jobs, which should be treated in a specific manner by the system. The ‘standard’ universe
acts as default, and contains all jobs which where compiled with the condor_compile
command. This special compilation process allows jobs to be checkpointed and continued
during their execution. The ‘vanilla’ universe is for binaries that do not support Condor
checkpointing, e.g. existing rendering or computation software. Other universes support
Globus job submission, parallel jobs or the execution of Java binaries.

The Condor DRMAA implementation in version 6.7.0 to 6.7.13 used the ‘standard’ universe
for job submission. This decision lead to the fact that every DRMAA application needed to
be re-compiled with condor_compile in order to be accepted for job submission. This
behavior prevented the re-use of DRMAA applications binaries as well as pre-compiled
language bindings on-top-of the C library (e.g. DRMAA Perl interface). Therefore it was
decided to submit jobs to the ‘vanilla’ universe in the final version of the library. Users are
now able to use their existing DRMAA applications in Condor without any change.

Since the DRMAA specification only suggests a late binding strategy at runtime, both
solutions would have been in accordance to the specification. We suggest the DRMAA
group to provide a strict statement whether the API interface should allow exchangeabil ity
of DRMAA implementations at compile time, or at load time (LD_LIBRARY_PATH)
respectively runtime. The last possibility would also demand a clarification of the search
strategy for DRMAA libraries in a system, which could be realized similar to the ODBC driver

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 4

manager approach.

B) Error code specifics
During the implementation of the Condor DRMAA library, multiple specification flaws
regarding error conditions and the respective return codes where detected. All these issues
where discussed either on the mail ing list or in the DRMAA phone conferences. We are
happy to see that all issues are collected on GridForge, and expect the discussion results to
be reflected in an updated version of GFD-R-P.022.

C) Job state definition
The manipulation of job state is one of the major objectives in a unified job submission
API. The drmaa_control function allows suspending or resuming a job. The DRMAA suspend
activity is mapped to a call of condor_hold, which kills the job currently executed and puts
it back again in the job queue as hold job. A drmaa_control call with the ‘release’ argument
frees the job from its hold state, by using the according Condor functionality.

While this behavior seems not be the intended functionality, there is no other way to support
the notion of job stopping and restarting in the vanilla universe. DRMAA leaves the
interpretation of control semantics completely to the implementation; therefore the Condor
way does not violate the specification. However, users might be surprised if a DRMAA
suspend call leads to checkpointing in one DRMS, and to job termination on another
DRMS. It might be a good idea to define some basic semantics for the drmaa_control
operations, beside the flow of job state changes.

D) Job category
The DRMAA concept of job categories appears to be a useful paradigm, which is somehow
comparable to the Condor idea of ‘universe’ settings. The actual Condor DRMAA
implementation supports a DRMAA-specific configuration file that can contain additional
submission settings for job categories.

In order to allow the DRM-independent usage of job categories, there should be a list of
predefined job category names in the DRMAA specification. The Condor ‘universes’ can act
as good example for high-level, but well understood operation modes of a DRM system (e.g.
‘parallel’, ‘checkpointed’, ‘vanilla’, ‘Java’).

E) Date Format
DRMAA defines an own date format for (maybe partial) time stamps. The time zone portion
of this timestamp string is not compliant to the formulation in ISO 8601 / RFC 822, which
defines the time zone format without a colon delimiter between local differential hours and
minutes [6]. A change of this specification would allow an easy usage of C library functions
like strptime, but breaks existing implementations. We therefore suggest this change for a
post-1.0 version of the specification.

F) Remote Files
The DRMAA job template contains mandatory attributes for input, output, and error stream
files. The attribute syntax is designed in a way that a user can specify a hostname as source
for the file, by concatenating the host name with a colon delimiter and the file name. In
case of a local file on the submission host, DRMAA still expects the delimiter colon as first
character of the attribute string, which seems to be not necessary and was the source for a
bug in the first Condor DRMAA version.

The definition of any host as source for the files is a feature not supported by the Condor
DRMAA implementation. The specification combines the availability of such a mechanism
with the general availabil ity of a file transfer mechanism in the DRMS (drmaa_transfer_files
attribute). This seems to be a problematic design decision – Condor has support for the
transfer of job-related files, but only between the submission host and the execution host.

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 5

For this reason, we suggest to make the host name portion of the attributes still optional, but
independent from the availability of a drmaa_transfer_files attribute. Implementations
should be able to identify the availabil ity of this feature in another way. In addition, we
suggest binding the colon delimiter in the attribute string to the existence of a host name
portion.

G) API Description Format
The GFD-R-P.022 document is mostly written in a programming-language neutral way,
using an IDL-like syntax for description. The Condor DRMAA implementation in C language
therefore relies on combined information from the GFD-R-P.022 specification and the C
language binding specification.

We clearly support the idea of a language-neutral specification, especially with the
ongoing developments for different programming languages like Java, Python and Perl.
However, we suggest the usage the offic ial IDL description standard [7] for a post-1.0 version
of the DRMAA specification, as already announced by the DRMAA group at GGF14 [8].
This allows syntactic checks of the specification, usage of numerous existing tools for
language binding generation, and proven semantics for the IDL language constructs.

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 6

3 DRMAA Compliance Test

The DRMAA working group published their first version of a DRMAA C compliance test suite
in September 2005. The test suite is based on the Sun Grid Engine 6 DRMAA test code,
and was extended and tuned during the tests with the Condor DRMAA implementation. The
current version of the testsuite reflects all functional properties of the specification to be
submitted for GFD recommendation status.

3.1 Test protocol

The feature-complete Condor DRMAA implementation, available with Condor 6.7.14, was
tested with the DRMAA test suite version 1.4.2. We performed 3 complete test runs on each
platform. In all cases, all tests where successful.

Startup command

/test_drmaa ALL_AUTOMATED /bin/sleep test_exit_helper test_kill_helper
root 2>&1 |tee log.txt

Test platform 1

Operating system
Linux 2.6.8-2-686-smp #1 SMP Thu May 19 17:27:55 JST 2005
i686 GNU/Linux (Debian Sarge)

Condor version

$CondorVersion: 6.7.13 Nov 7 2005 $
$CondorPlatform: I386-LINUX_RH9 $

Testsuite compiled with

gcc -g -O2 -DHAVE_CONFIG_H -I. -o test_drmaa test_drmaa.c
-L. -ldrmaa –lpthread

GCC version

Configured with: ../src/configure -v
--enable-languages=c,c++,java,f77,pascal,objc,ada,treelang -
-prefix=/usr --mandir=/usr/share/man
--infodir=/usr/share/info
--with-gxx-include-dir=/usr/include/c++/3.3
--enable-shared --enable-__cxa_atexit --with-system-zlib
--enable-nls --without-included-gettext
--enable-clocale=gnu --enable-debug --enable-java-gc=boehm -
-enable-java-awt=xlib
--enable-objc-gc i486-linux
Thread model: posix
gcc version 3.3.5 (Debian 1:3.3.5-12)

Test platform 2

Operating system
Linux 2.4.27-2-itanium-smp #1 SMP Tue Feb 1 18:19:12 MST 2005
ia64 GNU/Linux (Debian Sarge)

Condor version

$CondorVersion: 6.7.13 Nov 7 2005 $
$CondorPlatform: IA64-LINUX_SLES81 $

Testsuite compiled with

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 7

gcc -g -O2 -DHAVE_CONFIG_H -I. -o test_drmaa test_drmaa.c
-L. -ldrmaa –lpthread

GCC version
Configured with: ../src/configure -v
--enable-languages=c,c++,java,f77,pascal,objc,ada,treelang
--prefix=/usr --mandir=/usr/share/man
--infodir=/usr/share/info
--with-gxx-include-dir=/usr/include/c++/3.3
--enable-shared --enable-__cxa_atexit --with-system-zlib
--enable-nls --without-included-gettext
--with-system-libunwind --enable-clocale=gnu
--enable-debug --enable-java-gc=boehm
--enable-java-awt=xlib --enable-objc-gc ia64-linux
Thread model: posix
gcc version 3.3.5 (Debian 1:3.3.5-13)

Test platform 3

Operating system
Darwin Kernel Version 8.3.0: Mon Oct 3 20:04:04 PDT 2005;
root:xnu-792.6.22.obj~2/RELEASE_PPC Power Macintosh powerpc

Condor version
$CondorVersion: 6.7.10 Aug 3 2005 $
$CondorPlatform: PPC-OSX_10_3 $

Testsuite compiled with
gcc -g -O2 -DHAVE_CONFIG_H -I. -o test_drmaa test_drmaa.c
-L. -ldrmaa –lpthread

GCC version
Target: powerpc-apple-darwin8
Configured with:
/private/var/tmp/gcc/gcc-5026.obj~19/src/configure
--disable-checking --prefix=/usr --mandir=/share/man
--enable-languages=c,objc,c++,obj-c++
--program-transform-name=/^[cg][^+.-]*$/s/$/-4.0/
--with-gxx-include-dir=/include/gcc/darwin/4.0/c++
--build=powerpc-apple-darwin8 --host=powerpc-apple-darwin8
--target=powerpc-apple-darwin8
Thread model: posix
gcc version 4.0.0 (Apple Computer, Inc. build 5026)

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 8

4 Conclusion

We presented our experiences in the successful implementation of the Distributed Resource
Management Application API (DRMAA) specification GFD-R-P.022 for the Condor workload
management system. The specification, together with the C language binding document
v1.0, has shown its feasibility in order to provide a unified interface for job submission and
monitoring in DRM systems. Recent user requests on the Condor mailing list show an
increasing interest in a programming interface for Condor job submission. DRMAA enables
application developers to rely on a standardized interface for DRMS usage, without taking
care of the particular DRM system in use. Prominent examples for such projects are the
high-level language binding implementations (Java, Python, Perl) and several commercia l
and research projects [9].

To prepare the GFD-R-P.022 for recommendation status, the group should concentrate on
the improvement of the major description flaws (A, B). This is largely reflected in according
GridForge tracker items.

All functional issues identified (E, F) did not prevent us from implementing a fully DRMAA-
compliant library for the Condor system. We therefore suggest covering these issues in a
past-1.0 version of the DRMAA specification. The third class of issues (C, D, G) must also be
seen as a 'wishlist' for later versions of the document.

5 Security Considerations

Security issues are not discussed in this document. For security considerations of the DRMAA
specification, please refer to the GFD-R-P.022 document.

6 Contributors

Peter Tröger
Hasso-Plattner-Institute, University of Potsdam
Prof.-Dr.-Helmert-Str. 2-.3
14482 Potsdam
Germany

Becky Gietzel
University of Wisconsin-Madison
Department of Computer Sciences
1210 W. Dayton St. Rm # 4237
Madison, WI 53706

7 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of

GFD-E.103 2/22/2007

drmaa-wg@ogf.org 9

such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

8 Full Copyright Notice

Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English. The limited permissions granted above are perpetual and will not be revoked by the OGF
or its successors or assignees.

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

9 References

[1] Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas Haas, Bill

Nitzberg, and John Tollefsrud. Distributed Resource Management Application API
Specification 1.0. http://forge.ggf.org/projects/drmaa-wg/, 2004.

[2] Condor Team. Condor Public Licence Version 1.1. October 30, 2003. Available at
http://www.cs.wisc.edu/condor/downloads/

[3] Material for the GGF 12 DRMAA Tutorial, available at
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=69&category_id=881

[4] Andreas Haas, Roger Brobst, Nicholas Geib, Hrabri Rajic, Daniel Templeton, John
Tollefsrud, Peter Tröger. Distributed Resource Management Application API C Bindings
v1.0, presented at GGF13, February 2005

[5] Condor Project. Condor Manual. Available at http://www.cs.wisc.edu/condor/manual/
[6] David H. Crocker. Standard for the format of ARPA internet text messages (RFC 822).

August 13, 1982.
[7] Object Management Group. Common Object Request Broker Architecture: Core

Specification, Chapter 3, March 2004
[8] Daniel Templeton, Peter Tröger, Roger Brobst, Andreas Haas, Hrabri Rajic. Distributed

Resource Management Application API - IDL Bindings 0.35. presented at GGF14. May
2005

[9] DRMAA Wiki, Information about DRMAA users. Available at
http://www.drmaa.org/wiki/index.php/DrmaaUsers

