GFD-1.13 Malcolm P Atkinson, National e-Science Centre
Category: INFORMATIONAL Vijay Dialani, University of Southampton
DAIS-WG Leanne Guy, CERN
Inderpal Narang, IBM

Norman W Paton, University of Manchester

Dave Pearson, Oracle

Tony Storey, IBM

Paul Watson, University of Newcastle upon Tyne

March 13" 2003
Grid Database Access and Integration: Requirements and Functionalities

Status of This Memo

This memo provides information to the Grid community regarding the scope of requirements and
functionalities required for accessing and integration data within a Grid environment. It does not
define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

This document is intended to provide the context for developing Grid data service standard
recommendations within the Global Grid Forum. It defines the generic requirements for accessing
and integrating persistent structured and semi-structured data. In addition, it defines the generic
functionalities which a Grid data service needs to provide in supporting discovery of and
controlled access to data, in performing data manipulation operations, and in virtualising data
resources. The document also defines the scope of Grid data service standard recommendations
which are presented in a separate document.

dave.pearson@oracle.com 1

GFD-1.13 Malcolm P Atkinson, National e-Science Centre
Category: INFORMATIONAL Vijay Dialani, University of Southampton
DAIS-WG Leanne Guy, CERN
Inderpal Narang, IBM

Norman W Paton, University of Manchester

Dave Pearson, Oracle

Tony Storey, IBM

Paul Watson, University of Newcastle upon Tyne

March 13" 2003

Contents
Y 0] 1 =T SR 1
1. T 1o T [T o o SRS 3
2. Overview of Database Access and Integration Services..........cccoviieiiiiiie i 3
3. Requirements for Grid Database ServiCesc.uoii i 4
3.1 Data Sources and RESOUICEScoii it et e e e e e e e e e e e e e e e e e e annaeeeeaaaens 4
3.2 Data Structure and Representationooo i 5
3.3 Data OrganiSationcocueiiiiiiiiiiei e 5
3.4 Data Lifecycle ClassifiCationccouiiiiiiiiiiiiiie e 5
S T o 0117 g F= T o To S PRSP 6
3.6 Data ACCESS CONIIOlcuveiiieiiiiie ettt et e e st e e e e eeesnneeeeeanneeeas 6
3.7 Data Publishing @nd DiSCOVEIYc.uuiiiiiiie ittt e e e e nnavaaeeaae s 7
R T D= 1 c- WO o =T - i o] F= 3R URRR ST 8
3.9 Modes of Working With Datacccuviiiiiiii e 9
3.10 Data Management Operationscoocuiiiiiiiii i 10
4. Architectural ConSIAerations..............oiiiiiiiiiiiiiie e e e e e eereee e e e e e e e annes 10
4.1 Architectural AHFIDULEScoooi i e e e e e e 10
4.2 Architectural PrinCiples........coo e 11
5. Database Access and Integration Functionalities..............oocoi i 12
5.1 Publication and DISCOVEIY...........uiiiiiiiiiiiiiiee ettt 12
B.2 SHAIEMENES oot e e nees 12
5.3 Structured Data TranSPOIt.........cocooiiiiiiiiiiiieie et e e e 13
5.4 Data Translation and Transformationoccieiiiii i 13
oIS I - o 1= Vo (o 1 PSSR 14
5.6 Authentication, Access Control, and ACCOUNTINGccceeeiiiiiiiiiiiiiee e 15
5.7 MEIAAALA ..o e eas 16
5.8 Management: Operation and Performance............coccueeiiiiiiiiiiiee e 17
5.9 Data RePliCAtiON ... 18
5.10 Sessions and CONNECHONSeuiiiiiiie e e e e e e eeaens 19
5.1 101 (=Te] =1 (o] o H PR 20
6. L©70) g Lod 013 o] o 1= PSR 21
7. L= =Y = g oY RSP RR 22
8. 101 gF-T o o T3 oo LR PSPPI 23
8.1 Draft 1 (150 JUIY 2002)........vveieeieeeeeeeeeeeeee e ee s 23
8.2 Draft2 (4th 1O Tox (0] o 1) g2 010 12 TP URPRPP 23
8.3 Draft 3 (17" FEDIUANY 2003)........ceureeieeeeeeeeeeeeeeseeeeeeeee e eeee et s s eeee e ee e eeen e, 23
SecUrity CONSIAEIAtIONS.coiiiiiiiie it e et e e ettt e e st te e e e e aabe e e e e anbeeeeeaeeeaeanes 24
0 11T [0 0 0 =1 (o o PR 24
Intellectual Property Statementcoo i 25
FUll CopYFIGNt NOLICE ... e e 25

dave.pearson@oracle.com 2

GFD-1.13 March 2003

1. Introduction

This document is a revision of the draft produced on October 2002. It seeks to provide a context
for the development of standards for Grid Database Access and Integration Services (DAIS), with
a view to motivating, scoping and explaining standardization activities within the DAIS Working
Group of the Global Grid Forum (GGF) (http://www.cs.man.ac.uk/grid-db). As such it is an input to
the development of standard recommendations currently being prepared by the DAIS Working
Group which can be used to ease the deployment of data-intensive applications within the Grid,
and in particular applications that require access to database management systems (DBMSs)
and other stores of structured data. To be effective, such standards must:

1. Address recognized requirements.
2. Complement other standards within the GGF and beyond.
3. Have broad community support.

The hope is that this document can help with these points by: (1) making explicit how
requirements identified in Grid projects give rise to the need for specific functionalities addressed
by standardization activities within the Working Group; (2) relating the required functionalities to
existing and emerging standards; and (3) involving widespread community involvement in the
evolution of this document, which in turn should help to inform the development of specific
standards. In terms of (3), this document has been revised for submission at GGF7

This document deliberately does not propose standards — its role is to help in the identification of
areas in which standards are required, and for which the GGF (and in particular the DAIS
Working Group) might provide an appropriate standardisation forum.

The remainder of the document is structured as follows. Section 2 introduces various features of
database access and integration services by way of a scenario. Section 3 introduces the
requirements for Grid database services. Section 4 outlines the architectural principles for
virtualising data resources. Section 5 summarizes key functionalities associated with database
access and integration, linking them back to the requirements identified in Section 3. Section 6
presents some conclusions and pointers to future activities.

2. Overview of Database Access and Integration Services

This section uses a straightforward scenario to introduce various issues of relevance to database
access and integration services. A service requestor needs to obtain information on proteins with
a known function in yeast. The requestor may not know what databases are able to provide the
required information. Indeed, there may be no single database that can provide the required
information, and thus accesses may need to be made to more than one database. The following
steps may need to be taken:

1. The requestor accesses an information service, to find database services that can
provide the required data. Such an enquiry involves access to contextual metadata
[Pearson 02], which associates a concept description with a database service. The
relationship between contextual metadata and a database service should be able to
be described in a way that is independent of the specific properties (e.g., the data
model) of the database service.

2. Having identified one or more database services that are said to contain the relevant
information, the requestor must select a service based on some criteria. This could
involve interrogating an information service or the database service itself, to establish

3. things like: (i) whether or not the requestor is authorized to use the service; (ii)
whether or not the requestor has access permissions on the relevant data; (iii) how

dave.pearson@oracle.com 3

GFD-1.13 March 2003

much relevant data is available at the service; (iv) the kinds of information that are
available on proteins from the service; (v) the way in which the relevant data is stored
and queried at the service. Such enquiries involve technical metadata [Pearson 02].
Some such metadata can be described in a way that is independent of the kind of
database being used to support the service (e.g., information on authorization),
whereas some depends on properties of the underlying database (e.g., the way the
data is stored and accessed). Provenance and data quality are other criteria that
could be used in service selection, and which could usefully be captured as
properties of the source.

4. Having chosen a database service, the requestor must formulate a request for the
relevant data using a language understood by the service, and dispatch the request.
The range of request types (e.g., query, update, begin-transaction) that can be made
of a database service should be independent of the kind of database being used, but
specific services are sure to support different access languages and language
capabilities [Paton 02]. The requestor should have some control over the structure
and format of results, and over the way in which results to a request are delivered.
For example, results should perhaps be sent to more than one location or they
should perhaps be encrypted before transmission. The range of data transport
options that can be provided is largely independent of the kind of database that
underpins the service.

The above scenario is very straightforward, and the requestor could have requirements that
extend the interaction with the database services. For example, there may be several copies of a
database, or parts of a database may be replicated locally (e.g., all the data on yeast may be
stored locally by an organization interested in fungi). In this case, either the requestor or the
database access service may consider the access times to replicas in deciding which resource to
use. It is also common in bioinformatics for a single request to have to access multiple resources,
which may in turn be eased by a data integration service [Smith 02]. In addition, the requestor
may require that the accesses to different services run within a transactional model, for example,
to ensure that the results of a request for information are written in their entirety or not at all to a
collection of distributed database services.

The above scenario illustrates that there are many aspects to database access and integration in
a distributed setting. In particular, various issues of relevance to databases services (e.g.,
authorization and replication) are important to services that are not making use of databases. As
such, it is important that the DAIS Working Group is careful to define its scope and evolve its
activities taking full account of (i) the wide range of different requirements and potential
functionalities of Grid Database Services, and (ii) the relationship between database and other
services supported within The Grid.

3. Requirements for Grid Database Services

Generic requirements for data access and integration were identified through an analysis
exercise conducted over a three-month period, and reported fully in [Pearson 02]. The exercise
used interviewing and questionnaire techniques to gather requirements from grid application
developers and end users. Interviews were held and questionnaire responses were received from
UK Grid and related e-Science projects. Additional input has been received from CERN, the
European Astrowise and DataGrid projects, feedback given in DAIS working group sessions at
previous GGF meetings, and from other Grid related seminars and workshops held over the past
12 months.

3.1 Data Sources and Resources

The analysis exercise identified the need for access to data directly from data sources and data
resources. Data sources stream data in real or pseudo-real time from instruments and devices, or
from applications that perform in silico experiments or simulations. Examples of instruments that

dave.pearson@oracle.com 4

GFD-1.13 March 2003

stream data include astronomical telescopes, detectors in a particle collider, remote sensors, and
video cameras. Data sources may stream data for a long period of time but it is not necessarily
the case that any or all of the output streamed by a data source will be captured and stored in a
persistent state. Data resources are persistent data stores held either in file structures or in
database management systems (DBMSs). They can reside on-line in mass storage devices and
off-line on magnetic media. Invariably, the contents of a database are linked in some way, usually
because the data content is common to a subject matter or to a research programme. Throughout
this document the term database is applied to any organised collection of data on which
operations may be performed through a defined API. The ability to group a logical set of data
resources stored at one site, or across multiple sites is an important requirement, particularly for
curated data repositories. It must be possible to reference the logical set as a ‘virtual database’,
and to perform set operations on it, e.g. distributed data management and access operations.

3.2 Data Structure and Representation

In order to support the requirements of all science disciplines, the Grid must support access to all
types of data defined in every format and representation. It must also be possible to access some
numeric data at the highest level of precision and accuracy; text data in any format, structure,

language, and coding system; and multimedia data in any standard or user defined binary format.

3.3 Data Organisation

The analysis exercise identified data stored in a wide variety of structures, representations, and
technologies. Traditionally, data in many scientific disciplines have been organized in application-
specific file structures designed to optimise compute intensive data processing and analysis. A
great deal of data accessed within current Grid environments still exists in this form. However,
there is an important requirement for the Grid to provide access to data held in DBMSs and XML
repositories. These technologies are increasingly being used in bioinformatics, chemistry,
environmental sciences and earth sciences for a number of reasons. First, they provide the ability
to store and maintain data in application independent structures. Second, they are capable of
representing data in complex structures, and of reflecting naturally occurring and user defined
associations. Third, relational and object DBMSs also provide a number of facilities for
automating the management of data and its referential integrity.

3.4 Data Lifecycle Classification

No attempt was made in the analysis exercise to distinguish between data, information, and
knowledge when identifying requirements on the basis that one worker’s knowledge can be
another worker’s information or data. However, a distinction can be drawn between each stage in
the data life cycle that reflects how data access and data operations vary.

Raw data are created by a data source, normally in a structure and format determined by the
output instrument and device. A raw data set is characterised by being read-only, and is normally
accessed sequentially. It may be repeatedly reprocessed and is commonly archived once
processing is complete. Therefore, the Grid needs to provide the ability to secure this type of data
off-line and to restore it back on-line.

Reference data are frequently used in processing raw data, when transforming data, as control
data in simulation modeling, and when analysing, annotating, and interpreting data. Common
types of reference data include: standardised and user defined coding systems, parameters and
constants, and units of measure. By definition, most types of reference data rarely change.

Almost all raw data sets undergo processing to apply necessary corrections, calibrations, and
transformations. Often, this involves several stages of processing. Producing processed data sets
may involve filtering operations to remove data that fail to meet the required level of quality or
integrity, and data that do not fall into a required specification tolerance. Conversely, it may
include merging and aggregation operations with data from other sources. Therefore the Grid

dave.pearson@oracle.com 5

GFD-1.13 March 2003

must maintain the integrity of data in multi-staged processing, and should enable checkpointing
and recovery to a point in time in the event of failure. It should also provide support to control
processing through the definition of workflows and pipelines, and enable operations to be
optimised through parallelisation.

Result data sets are subsets of one or more databases that match a set of predefined conditions.
Typically, a result data set is extracted from a database for the purpose of subjecting it to focused
analysis and interpretation. It may be a statistical sample of a very large data resource that
cannot feasibly be analysed in its entirety, or it may be a subset of the data with specific
characteristics or properties. A copy of result data may be created and retained locally for
reasons of performance or availability. The ability to create user defined result sets from one or
more databases requires the Grid to provide a great deal of flexibility in defining the conditions on
which data will be selected, and in defining the operations that merge and transform data.

Derived data sets are created from other existing processed data, result data, or other derived
data. Statistical parameters, summarisations, and aggregations are all types of derived data that
are important in describing data, and in analysing trends and correlations. Statistically derived
data frequently comprise a significant element of the data held in a data warehouse. Derived data
are also created during the analysis and interpretation process when recording observations on
the properties and behaviour of data, and by recording inferences and conclusions on
relationships, correlations, and associations between data. . An important feature of derived data
created during analysis and interpretation is volatility. Data can change as understanding evolves
and as hypotheses are refined over the course of study. Equally, derived data may not always be
definitive, particularly in a collaborative work environment. For this reason it is important that the
Grid provides the ability to maintain personalised versions, and multiple versions of inference
data.

3.5 Provenance

Provenance, sometimes known as lineage, is a record of the origin and history of a piece of data.
It is a special form of audit trail that traces each step in sourcing, moving, and processing data,
together with ‘who did what and when’. In science, the need to make use of other worker’s data
makes provenance an essential requirement in a Grid environment. It is key to establishing the
ownership, quality, reliability and currency of data, particularly during the discovery processes.
Provenance also provides information that is necessary for recreating data, and for repeating
experiments accurately. Conversely, provenance can avoid time-consuming and resource-
intensive processing expended in recreating data.

The structure and content of a record of provenance can be complex because data, particularly
derived data, often originates from multiple sources, multi-staged processing, and multiple
analysis and interpretation. For example, the provenance of data in an engine fault diagnosis may
be based on: technical information from a component specification, predicted failure data from a
simulation run from a modeling application, a correlation identified from data mining a data
warehouse of historic engine performance, and an engineer’s notes made when inspecting a
faulty engine component.

The Grid must provide the capability to record data provenance, and the ability for a user to
access the provenance record in order to establish the quality and reliability of data. Provenance
should be captured through automated mechanisms as far as possible, and the Grid should
provide tools to assist owners of existing data to create important provenance elements with the
minimum of effort. It should also provide tools to analyse provenance and report on
inconsistencies and deficiencies in the provenance record.

3.6 Data Access Control

One of the principal aims of the Grid is to make data more accessible. However, there is a need
in almost every science discipline to limit access over some data. The Grid must provide controls

dave.pearson@oracle.com 6

GFD-1.13 March 2003

over data access to ensure the confidentiality of the data is maintained, and to prevent users who
do not have the necessary privileges to change data content.

In the Grid, it must be possible for a data owner to grant and revoke access permissions to other
users, or to delegate this authority to a trusted third party or data custodians. This is a common
requirement for data owned or curated by an organisation, e.g. Gene sequences, chemical
structures, and many types of survey data.

The facilities that the Grid provides to control access must be very flexible in terms of the
combinations of restrictions and the level of granularity that can be specified. The requirements
for controlling the granularity of access can range from an entire database down to a sub-set of
the data values# in a sub-set of the data content. For example, in a clinical study it must be
possible to limit access to patients’ treatment records based on diagnosis and age range. It must
also be possible to see the age and sex of the patients without knowing their names, or the name
of their doctor. The specification of this type of restriction is very similar to specifying data
selection criteria and matching rules in data retrieval operations.

The ability to assign any combination of insert, update, and delete privileges to the same level of
granularity to which read privilege has been granted is an important requirement. For example, an
owner may grant insert access to every collaborator in a team so they can add new data to a
shared resource. However, only the team leader may be granted privilege to update or delete
data, or to create a new version of the data for release into the public domain.

The Grid must provide the ability to control access based on user role as well as by named
individuals. Role based access models are important for collaborative working, when the
individual performing a role may change over time and when several individuals may perform the
same role at the same time. Role base access is a standard feature in most DBMSs. It is
commonly exploited when the database contains a wide subject content, sub-sets of which are
shared by many users with different roles.

For access control to be effective it must be possible to grant and revoke all types of privileges
dynamically. It must also be possible to schedule the granting and revoking of privileges to some
point in the future, and to impose a time constraint, e.g. an expiry time or date, or a access for a
specified period of time. Data owners will be reluctant to grant privileges to others if the access
control process is complicated, time consuming, or burdensome. Consequently, the Grid must
provide facilities that, whenever possible, enable access privileges to be granted to user groups
declaratively. It must also provide tools that enable owners to review and manage privileges
easily, without needing to understand or enter the syntax of the access control specification.

3.7 Data Publishing and Discovery

A principal aim of the Grid is to enable an e-Science environment that promotes and facilitates
sharing and collaboration of resources. A major challenge to making data more accessible to
other users is the lack of agreed standards for structuring and representing data. There is an
equivalent lack of standards for describing published data. This problem is widespread, even in
those disciplines where the centralized management and curation of data are well developed.
Therefore, it is important that facilities the Grid provides for publishing data are extremely flexible.
The Grid should encourage standardization, but enforcing it must not be a pre-requisite for
publishing data. It must support the ability to publish all types of data, regardless of volume,
internal structure and format. It must also allow users to describe and characterize published data
in user-defined formats and terms. In some science domains there is a clear requirement to
interrogate data resources during the discovery process using agreed ontologies and
terminologies. A knowledge of ownership, currency, and provenance is required in order to
establish the quality and reliability of the data content and so make a judgment on its value and
use. In addition, specification of the physical characteristics of the data, e.g. volume, number of
logical records, and preferred access paths, are necessary in order to access and transport the
data efficiently. The minimum information that a user must know in order to reference a data

dave.pearson@oracle.com 7

GFD-1.13 March 2003

resource is its name and location. A specification of its internal data structure is required in order
to access its content.

It is anticipated that specialised applications may be built specifically to support the data
publishing process. Much of the functionality required for defining and maintaining publication
specifications is common with that required for defining and maintaining metadata.

The Grid needs to provide the ability to register and deregister data resources dynamically. It
should be possible to schedule when these instructions are actioned, and to propagate them to
sites holding replicates and copies of the resources. It should also be possible ensure the
instructions are carried out when they are sent to sites that are temporarily unavailable. Every
opportunity in meeting the requirements must be taken to ensure that, wherever possible, the
metadata definition, publication and specification processes are automated and that the burden of
manual metadata entry and editing is minimized. There is a need for a set of intelligent tools that
can process existing data by interpreting structure and content, extracting relevant metadata
information, and populating definitions automatically. In addition, there is a need for Grid
applications to incorporate these tools into every functional component that interacts with any
stage of data lifecycle so that metadata information can be captured automatically.

The Grid needs to support data discovery through interactive browsing tools, and from within an
application when discovery criteria may be pre-defined. It must be possible to frame the discovery
search criteria using user-defined terms and rules, and using defined naming conventions and
ontologies. It must also be possible to limit discovery to one or more named registries, or to allow
unbounded searching within a Grid environment. When searches are conducted, the Grid should
be aware of replicas of registries and data resources, and exploit them appropriately to achieve
the required levels of service. When data resources are discovered it must be possible to access
the associated metadata and to navigate through provenance records to establish data quality
and reliability. It must be possible to interrogate the structure and relationships within an ontology
defined to reference the data content, to view the data in terms of an alternative ontology, and to
review the data characteristics and additional descriptive information. It must also be possible to
examine the contents of data resources by displaying samples, visualizing, or statistically
analysing a data sample or the entire data set.

3.8 Data Operations

The analysis exercise identified requirements to perform all types of data manipulation and data
management operations on data.

The ability to retrieve data within a Grid environment is a universal requirement. Users must be
able to retrieve selected data directly into Grid applications, and into specialised tools used to
interrogate, visualise, analyse, and interpret data. The analysis exercise identified the need for a
high degree of flexibility and control in specifying the target, the output, and the conditions of the
retrieval. These may be summarised as follows:

o The Grid must provide the ability to translate target, output, and retrieval condition
parameters that are expressed in metadata terms into physically addressable data
resources and data structures.

o The Grid must provide the ability to construct search rules and matching criteria in
the semantics and syntax of query languages from the parameters that are specified,
e.g. object database, relational database, semi-structured data and document query
languages. It must also be capable of extracting data from user defined files and
documents.

o When more than one data resource is specified, the Grid must provide the ability to
link them together, even if they have different data structures, to produce a single
logical target that gives consistent results.

dave.pearson@oracle.com 8

GFD-1.13 March 2003

o When linking data resources, the Grid must provide the ability to use data in one
resource as the matching criteria or conditions for retrieving data from another
resource, i.e. perform a sub-query. As an example, it should be possible to compare
predicted gene sequences in a local database against those defined in a centralised
curated repository.

e The Grid must be able to construct distributed queries when the target data
resources are located at different sites, and must be able to support heterogeneous
and federated queries when some data resources are accessed through different
query languages. The integrated access potentially needs to support retrieval of
textual, numeric or image data that match common search criteria and matching
conditions. In certain instances, the Grid must have the ability to merge and
aggregate data from different resources in order to return a single, logical set of result
data. This process may involve temporary storage being allocated for the duration of
the retrieval.

¢ When the metadata information is available and when additional conditions are
specified, the Grid should have the ability to over-ride specified controls and make
decisions on the preferred location and access paths to data, and the preferred
retrieval time in order to satisfy service level requirements.

Data analysis and interpretation processes may result in existing data being modified, and in new
data being created. In both cases, the Grid must provide the ability to capture and record all
observations, inferences, and conclusions drawn during these processes. It must also reflect any
necessary changes in the associated metadata. For reasons of provenance the Grid must
support the capture of workflow associated with any change in data or creation of new data. The
level of detail in the workflow should be sufficient to represent an electronic lab book. It should
also allow the workflow to be replayed in order to reproduce the analysis steps accurately and to
demonstrate the provenance of any derived data.

Users may choose to carry out analysis on locally maintained copies of data resources for a
number of reasons. It may be because interactive analysis would otherwise be precluded
because network performance is poor, data access paths are slow, or because data resources at
remote sites have limited availability. It may be because the analysis is confidential, or it may be
because security controls restrict access to remote sites. The Grid must have the capability to
replicate whole or sub-sets of data to a local site. It should record when users take a local, or
personal copy of data for analysis and interpretation, and to notify them when the original data
content changes. It should also provide facilities for users to consolidate changes made to a
personal copy back into the original data. When this action is permitted, the Grid should either
resolve any data integrity conflicts automatically, or must alert the user and suspend the
consolidation until the conflicts have been resolved manually.

3.9 Modes of Working with Data

The requirements analysis identified two methods of working with data; the traditional approach
based on batched work submitted for background processing, and interactive working.
Background working is the predominant method for compute intensive operations that process
large volumes of data in file structures. Users tend to examine, analyse, and interpret processed
data interactively using tools that provide sophisticated visualization techniques, and support
concurrent streams of analysis.

The Grid must provide the capability to capture context created between data analyses during
batch and interactive workflows, and context created between data of different types and
representations drawn from different disciplines. It must also be able to maintain the context over
a long period of time, e.g. the duration of a study. This is particularly important in interdisciplinary
research, e.g. an ecological study investigating the impact of industrial pollution may create and
maintain context between chemical, climatic, soil, species and sociological data.

dave.pearson@oracle.com 9

GFD-1.13 March 2003

3.10 Data Management Operations

The prospect of almost unlimited computing resources to create, process, and analyse almost
unlimited volumes of data in a Grid ‘on demand’ environment presents a number of significant
challenges. Not least is the challenge of effective management of all data published in a Grid
environment.

Given the current growth rate in data volumes, potentially millions of data resources of every type
and size could be made available in a Grid environment over the next few years. The Grid must
provide the capability to manage these data resources across multiple, heterogeneous
environments globally, where required on a 24x7x52 hour availability basis. Data management
facilities must ensure that data resource catalogues, or registries, are always available and that
the definitions they contain are current, accurate, and consistent. This equally applies to the
content of data resources that are logically grouped into virtual databases, or are replicated
across remote sites. It may be necessary to replicate data resource catalogues, for performance
or fail-over reasons. The facilities must include the ability to perform synchronizations dynamically
or to schedule them, and they must be able to cope with failure in the network or failure at a
remote site.

An increasing amount of data held in complex data structures is volatile, and consequently the
potential for loss of referential integrity through data corruption is significantly increased. The Grid
must provide facilities that minimize the possibility of data corruption occurring. One obvious way
is to enforce access controls stringently to prevent unauthorized users gaining access to data,
either through poor security controls in the application or by any illegal means. A second, more
relevant approach, is for the Grid to provide a transaction capability that maintains referential
integrity by coordinating operations and user concurrency in an orderly manner, as described in
[Pearson 02].

4. Architectural Considerations

4.1 Architectural Attributes

Many Grid applications that access data will have stringent system requirements. Applications
may be long-lived, complex and expected to operate in “business-critical” environments. In order
to achieve this, architectures for grid data access and management should have the following
attributes:

FLEXIBILITY

It must be possible to make local changes at the data sources or other data access components
whilst allowing the remainder of the system to operate unchanged.

FUNCTIONALITY

Grid applications will have a rich set of functionality requirements. Making a data source available
over the Grid should not reduce the functionality available to applications.

PERFORMANCE

Many grid applications have very stringent performance requirements. For example, intensive
computation over large datasets will be common. The architecture must therefore enable high-
performance applications to be constructed.

DEPENDABILITY

Many data intensive grid applications will have dependability requirements, including integrity,
availability and security. For example, integrity and security of data will be vital in medical
applications, while for very long-running computations, it will be necessary to minimise re-
computation when failures occur.

dave.pearson@oracle.com 10

GFD-1.13 March 2003

MANAGEABILITY

Many grid applications will consist of a complex assembly of data and computational
components. The set of components may be dynamically assembled, and change over time.
Consequently, manageability is an issue that cannot be left entirely to the bespoke efforts of the
user. Each component in the system must make available management interfaces to allow
management to be integrated across the application. Key aspects of management include the
ability to monitor and control configurations, operations, performance and problems.

COMPOSABILITY

The architecture cannot focus solely on data access and management. It must take into account
the fact that Grid applications must be able to efficiently combine computation and data, and that
it is this combination that must provide all the other attributes listed above.

4.2 Architectural Principles

As discussed in [Foster 02a] and [Foster 02c], the fundamental value proposition of a grid is
virtualization, or transparent access to distributed compute resources. For an application to derive
value from distributed data sources across a grid, this virtualization also needs to include
transparent access to data sources. The Open Grid Services Architecture (OGSA) [Foster 200b]
introduces various services for transparent access to compute resources and the intention is to
complement these with services for data access and management. A wide range of
transparencies are important for data and the following are long—term goals in this area, going
beyond what is available today:

HETEROGENEITY TRANSPARENCY

The access mechanism should be independent of the actual implementation of the data source
(such as whether it is a file system, a DB2 or a Oracle DBMS, etc.). Even more importantly, it
should be independent of the structure (schema) of the data source. For example, a data source
should be allowed to rearrange its data across different tables without affecting applications.

LOCATION TRANSPARENCY
An application should be able to access data irrespective of its location.
NAME TRANSPARENCY

An application should be able to access data without knowing its name or location. Some
systems like DNS and distributed file systems provide a URL or name as a level of indirection, but
this still requires knowing the exact name of the data object. Instead, data access should be via
logical domains, qualified by predicates on attributes of the desired object. For example, in the
digital radiology project, a doctor may want to find records of all patients in a specific age group,
having a specific symptom. “Patients” is a logical domain spanning multiple hospitals. The doctor
should not be forced to specify the data sources (hospitals) in the query, rather a discovery
service should be used by the query processor in determining the relevant data sources.

DISTRIBUTION TRANSPARENCY

An application should be able to query and update data without being aware that it comes from a
set of distributed sources. In addition, an application should be able to manage distributed data in
a unified fashion. This involves several tasks, such as maintaining consistency and data integrity
among distributed data sources, and auditing access.

REPLICATION TRANSPARENCY

Grid data may be replicated or cached in many places for performance and availability. An
application accessing data should get the benefit of these replicas without having to be aware of
them. For example, the data should automatically be accessed from the most suitable replica
based on criteria such as speed and cost.

dave.pearson@oracle.com 11

GFD-1.13 March 2003

OWNERSHIP & COSTING TRANSPARENCY

If grids are successful in the long term, they will evolve to span organizational boundaries, and
will involve multiple autonomous data sources. As far as possible, applications should be spared
from separately negotiating for access to individual sources, whether in terms of access
authorization, or in terms of access costs.

Of course, it should be possible to discard these transparencies. Virtualized access should be the
default but not the only behaviour. An application that wants high performance should be able to
directly access the underlying sources, e.g., in order to apply optimizations specific to a particular
data format.

5. Database Access and Integration Functionalities

5.1 Publication and Discovery

In a service-based architecture, a service provider publishes a description of a service to a
service registry. This registry can then be consulted, by a service requestor, an appropriate
service description extracted, and finally a binding created that allows calls to be made to the
service by the requestor [Kreger-01]. Such a registry can use standard description models, such
as UDDI, or provide alternative project or registry-specific lookups.

The need to provide effective publication and discovery that meet the requirements outlined in
Section 3.7 means that descriptions of database services, like other services, must be developed.
A basic service description could be the WSDL of the service. Such information is essential to
enabling calls to be made to the service, but is likely to be less useful to requestors that want to
select a database service based on its capabilities and the data it is making available. Thus it
might be useful to publish substantial information on the contents of the database, in addition to
details of the operations that the database service supports. The effectiveness of such
descriptions would be significantly increased if different services published descriptions of their
contents and capabilities using consistent terms and structures. For example, in OGSA [Foster
02a], service data elements allow a service to describe itself using an XML Schema.

The scope of the DAIS Working Group includes defining standard structures and terms through
which data services can be described, and which could be used in a registry to describe available
services.

5.2 Statements

The requirements outlined in Section 3.8 identify three types of operation that can be performed
on a database; data manipulation (e.g. Read, Update), data definition (e.g. Create, Alter), and
control setting (e.g. Set Transaction, Commit, Rollback). This implies that the database system
over which a service is being provided supports a query or command language interface. This is
certainly true for relational databases, but is less uniformly the case for object databases. As
such, this is an area in which there may be difficulties supporting consistent service interfaces to
different database paradigms and products.

Database statements may involve significant processing time, as they may require access to or
transferring of substantial amounts of data. We assume that each operation goes through three
phases:

1. Preparation and validation, during which the statement operation is checked to
ensure that it is syntactically and semantically correct , and that it conforms to the
data model and the capabilities of the database.

2. Application, during which time updates are performed, or the query evaluated and
results constructed.

dave.pearson@oracle.com 12

GFD-1.13 March 2003

3. Result Delivery, during which time results are made available to the caller of the
operation.

It is envisaged that a statement interface may allow these steps to be performed synchronously
or asynchronously. For example, a Query operation might perform all three steps above, and
return the result, with the service requestor blocking until the query has been evaluated and the
result delivered. Alternatively, a Query operation may complete after step (1), providing an
indication of success to the requestor, which is subsequently informed via a notification
mechanism when steps (2) and (3) have completed. Factors such as anticipated query execution
times and result sizes could be important in determining which approach is most suitable in a
given situation.

A single database service might often support several notations. For example, Xquery and Xpath
might both be supported by an interface to an XML repository. When a database service is
described in a standard way, it should indicate which notations it is prepared to use, and this
information may periodically be modified during the lifetime of the service.

The scope of the DAIS Working Group includes defining a standard database statement interface
which supports statement operations expressed in native query and command languages.
Currently, the Working Group has no plans to define languages for specifying database statement
operations. Evolving specifications (e.g., [Krause 02]) are available for discussion on the DAIS
WWW site.

5.3 Structured Data Transport

The provision of an efficient data transport infrastructure is implicit in the requirements identified
for data manipulation operations and for data management operations such bulk load and
replication. It has been central to Grid middleware from an early stage. Furthermore, work has
taken place to provide higher-level services for file access and manipulation, such as GASS
[Bester 99]. However, it seems likely that there is scope for additional data transport services that
might be used, for example, for delivering large query results. Such a higher-level Grid data
transport service should:

1. Deliver data from one source to many destinations along a series of channels.
2. Provide systematic ways to perform encryption or compression on selected channels.

3. Provide consistent mechanisms for notification of successful or unsuccessful
delivery, or for monitoring progress towards completion of a delivery request.

4. Use different protocols for delivery along different channels.

The scope of the DAIS working includes defining standards for a transport service which enables
the functionality listed above. The Working Group should also consider standards that address
different modes of delivery, e.g. streaming and streaming.

5.4 Data Translation and Transformation

A consequence of the lack of agreed standards for structuring, formatting, and representing data
is the widespread schematic heterogeneity among existing data. This is true as much in the
commercial world as it is across scientific domains and it is a problem that will not go away in the
short term. In consequence, it is likely that throughout their lifecycle, as described in Section 3,
most data resources accessed through a Grid data service will need to undergo some form of
translation and/or transformation to bring the data into an application useable state. It is
envisaged that data may be subjected to one or more types of transformation within a service
operation:

1. Restructuring by changing the sequence and/or format of data items

dave.pearson@oracle.com 13

GFD-1.13 March 2003

2. Converting data content by applying a change in units of measure, in coordinate
system, or some other change (e.g. Fourier transform)

3. Making the data conform to different constraint rules (e.g. enforcing uniqueness,
mandatory values) in order to exchange data between different data models

The scope of the DAIS group includes defining standards for interfacing into translation and
transformation services before statement execution, and at any stage after statement execution
up to the point delivery to an end point. The standard should include the capability to compose
higher level services which incorporate translation and transformation functions using pipelining
an workflow techniques.

5.5 Transactions

Transactions are crucial to database management, in that they are central to reliability and
concurrency control. Transactions, however, are not database-specific artefacts — other programs
can and do provide transactional features through middleware services that conform to industry
standards (e.g., OMG, J2EE). This section gives an indication of how a transaction service might
be used in conjunction with a database service, and it also explains how such a service may be
extended to satisfy a more flexible requirement to coordinate operations across a grid.

A minimal transaction interface that a Grid service might support could include BeginTransaction,
Commit and Rollback operations, thereby allowing a client to coordinate accesses to a single
database service. This is an essential requirement for data held in database management
systems, but is also considered important for multi-stage processing of raw data held in flat file
structures. However, it may be necessary for a transaction to span multiple services. If a
database service is to be able to participate in distributed transactions, it must provide operations
for use by the transaction manager that is overseeing the distributed transaction. For example,
this might include a Prepare ToCommit operation for use by a two-phase commit protocol to
ensure that all or none of the database services participating in a distributed transaction commit.

Although transactions are a fundamental concept for database operations, the Grid could be felt
to require additional and more flexible mechanisms for controlling requests and outcomes than
are typically offered by traditional distributed and database transaction models. Some specific
differences between the Grid and traditional object transaction environments are:

e Multi-site collaborations that often rely on asynchronous messaging. While this model
also occurs in traditional distributed and database systems, the transactions in a
traditional system are typically chained together rather than considered as a part of
an overall concurrently executing collaboration.

e Operations across the Grid inherently are composed of business processes that span
multiple regions of control. Such an environment contrasts significantly with
traditional distributed and database systems, where the processing dedicates
resources exclusively to the executing transaction (database locks, threads, and so
on).

e Traditional distributed and database transaction models optimise execution for high-
volume, short-duration transactions and conversations. Grid operations will typically
be of longer duration.

Instead of simply extending an existing transaction model to the Grid, an incremental approach
may be appropriate:

1. Construction of a core activity service model that provides the capability to specify an
operational context for a request (or series of requests), controlling the duration of the
activity, and defining the participants engaged in the outcome decision. An example
of such a service is the Additional Structuring Mechanisms for the OTS Specification
from the OMG [OMG-00], which is also being adopted within the Java Activity
Service.

dave.pearson@oracle.com 14

GFD-1.13 March 2003

2. Development of a High Level Service (HLS) that provides implementation of patterns
typical in a Grid environment, e.g.

o Traditional distributed and database model where operations occur completely or
not at all. Such a completion processing semantic provides the behaviour of a
traditional transaction model (i.e., a two-phase commitment semantic).

¢ Relaxed semantics such as conversations or collaborations, where a series of
operations occur in a more loosely coordinated activity. The participants
determine the requirements for completion processing, which may include
patterns for compensation, reconciliation, or other styles of collaboration, as
required.

Note that the requirement exists to provide a standardized client interface to allow applications to
make use of any HLS implementation. In the Web Services community, the WS-Transaction
[Cabrera 2002a] and WS-Coordination [Cabrera 2002b] proposals cover much of the ground
discussed above, but are some way away from acceptance as standards.

The scope of the DAIS Working does not include defining new standards for transactional
models. However, the Working Group should track, and should seek to take account of the WS-
Transaction and WS-Coordination proposals.

5.6 Authentication, Access Control, and Accounting

A heterogeneous environment like the Grid necessitates support for different types of
authentication mechanism. This is also recognised in the recent security specifications of Web
Services [Atkinson 02]. In this section we restrict ourselves to describing specific Authentication,
Access Control and Accounting (AAA) functionalities for Database Access and Integration. We do
not attempt to provide any solutions to the requirements identified in Section 3.6:

e Delegating Access Rights. Present day solutions, such as GSI [Butler 00], provide a
means of delegating user rights by issuing tickets for access to individual resources.
This, however, allows the receiver to impersonate all the user’s capabilities. For
example, consider a Grid database access mechanism in which Grid-user credentials
are mapped onto local-database-user credentials. To provide third party access the
user issues a proxy certificate to a user or an application — henceforth referred to as
an impersonator. Consider a scenario whereby a user has read, update and delete
access to a table in a database. Issuing a proxy certificate allows the impersonator to
obtain all three access-permissions; restricted delegation can be achieved by using
the Community Authorisation Service[Pearlman 01]. A fine-grained delegation
mechanism should allow the user to determine the level of access it wishes to
delegate. For this purpose both the underlying resource and the Authorisation
mechanism should support dynamic partitioning of access rights. For example,
consider a user having “execute” rights over a stored procedure that results in the
creation of a table or dataset. The stored procedure exists in a database but is
owned by the database owner. Execution of the stored procedure results in the
creation of the dataset over which the user obtains read, update and delete rights, of
which the user wishes to delegate only the select rights to a group of service users.
This scenario stresses the need for the solution provided to allow dynamic discovery,
allocation and delegation of access rights.

o Authentication mapping for users with multiple roles in the underlying system. At
times, a single authentication identifier/user has multiple roles in the underlying
resource, in our case the database. An application performing a particular task
should be allowed to authenticate as a “particular” role; for example, JDBC 3.0
connection object allows the user to specify the role in the connection properties.
Current schemes for Grid authentication mechanisms do not support role-based
access control (RBAC).

dave.pearson@oracle.com 15

GFD-1.13 March 2003

e Accounting methods and problems with group accounting. Accounting mechanisms
in the Grid are important for recording resource utilisation for costing and capacity
planning purposes. They also aim to provide estimates and resource usage for a
given task. Current RDBMs do not typically provide estimates on the approximate
time required to complete a given task. Providing such an estimate is difficult as this
depends on a number of factors which include and are not limited to: the query in
question, the number of databases involved in a distributed query, communication
overheads due to distribution of data, variety of indexing algorithms in use, the
caching algorithm, the status of the cache due to previous queries, etc. However, it is
absolutely necessary that databases should provide some measure of the actual
resources that were used to satisfy a specific request.

The scope of the DAIS Working Group does not include defining generic AAA standards.
However, the Working Group must make appropriate standards groups aware of the specific
requirements for controlling accessing data, and of the potential risks of exposing DBMS security
through the adoption of inappropriate security models. Equally, the Working Group must ensure
that Grid data services are capable of exposing sufficient information to satisfy the accounting
standard needs.

5.7 Metadata

Metadata, the term for describing ‘data about data’ is essential to meeting many of the
requirements outlined in Section 3. It is essential for facilitating data management tasks that are
involved in maintaining the integrity and consistency of data, and for tasks involved in publishing
and discovering data. Metadata is referenced when performing processing, retrieval, analysis and
interpretation of data, and it is important for establishing the ownership, currency, validity, and
quality of data. Metadata is also essential to the development of Grid services because it enables
data operations to be abstracted to a sufficient degree that services can be created and made
reusable. This facility makes it possible to access and manipulate data content without knowing
where it is physically located, or how it is structured.

Several types of Metadata are important for the development of Grid data access and integration
services:

e Technical metadata defines the location of data sources and resources; the physical data
structure, organisation and grouping of data items into logical records; and those
characteristics of the data that are important in deciding how data is best accessed and
transported. Technical metadata also defines data currency and history; i.e. versions,
and ownership of data.

e Contextual metadata defines naming conventions, terminologies and ontologies through
which data can be logically referenced. Contextual metadata increases the quality and
reliability of data because the definitions conform to agreed syntax and semantics, and
also record structural associations and relationships within the data between definitions,
and to define rules for conflicts between mappings.

o Derived metadata defines the context and meaning of data derived from any other data.
This type of metadata is commonly used in data warehousing environments, when it is
often more efficient to store derived data than to recalculate the values dynamically each
time they are required.

e Mapping metadata defines equivalences between discrete contextual metadata
definitions, and between contextual and technical metadata. The ability to map
relationships between contextual metadata is particularly important because of the lack of
agreed standards in scientific naming conventions for terminologies and ontologies. It
enables users to compare classifications and ontologies in terms of their naming
conventions, and structural relationships and rules. It also enables them to establish what
alternative definitions are available for referencing data content.

dave.pearson@oracle.com 16

GFD-1.13 March 2003

The ability to map contextual metadata to physical data structures and schemas is a
requirement in order to enable users to access data content using logical references; i.e.
without needing to know the definition of its underlying record structure or data schema.
Mapping, in conjunction with contextual metadata, enables users to integrate data sets
defined in different classifications and ontologies. This provides the ability to specify a
single set of search criteria and data matching rules when performing integrated or
federated queries against multiple data resources, and for referencing data in a virtual
database.

In terms of standards, most database management standards (e.g., for object and for relational
databases) include proposals for the description of various kinds of technical metadata. Many
domain-specific coding schemes and terminologies exist with a view to easing the representation
of contextual metadata, and the Semantic Web community is developing standards for ontology
languages [Heflin 02]. With a view to providing consistent representation of metamodels, the
OMG has developed a Meta Object Facility, which is the basis of the Java Metadata interface.

The scope of the DAIS Working Group includes defining standards for describing data service
operations, data content, and database capabilities in a consistent way. The standards must
define a minimum set of descriptions of operations and database capabilities to which any service
must conform, and define minimum description data content. They should also define extensions
to database capabilities that are product specific, and extensions to data content descriptions and
service capabilities which enable service operations to be configured to meet required service
levels.

5.8 Management: Operation and Performance

Management of databases in a Grid environment deals with the tasks of creating, maintaining,
administering and monitoring databases. In addition, facilities for the management of users and
roles and their associated access privileges, resource allocation and co-scheduling, the provision
of metadata to client programs, database discovery and access, and performance monitoring are
all necessary management tasks. Many such high-level management services are currently
provided by DBMSs, with each specific system supporting different functionality and presenting a
different interface. Most DBMSs are not open source, so integration into a Grid environment will
probably require some external wrapping. It is conceivable that in the future, DBMSs will be
enhanced to include Grid services. Grid management services must provide the functionality
required to integrate existing, autonomously managed databases into a Grid environment, as well
as for the creation of new databases. The Grid database administrator should have access to all
databases through a common interface.

In a Grid environment, database management services should facilitate both operational
management and database management across a set of heterogeneous databases. Operational
management includes the creation of roles in a database and the assignment of users and
permissions to them. Database management should allow the Grid database administrator to
create, delete and modify databases. Authentication and authorisation of Grid based access can
be handled by a separate security module that is shared with resources other than databases.

Grid enabled databases will not be exclusively available for Grid based use; access by non Grid
users independently of the Grid will probably also be possible. The real database administrator
usually has full access privileges, however in a Grid environment, it may be desirable to restrict
the privileges of the Grid database administrator for the DBMS. For example, Grid access may
only be authorised to certain databases, or there may be a predefined Grid tablespace, outside of
which the Grid database administrator has no privileges.

Applications using the Grid to access data will usually need to extract data from multiple database
instances, or may need to create new databases across multiple DBMSs that adhere to some
application specific requirements (e.g. schema, data types). A priori knowledge of the DBMS (e.qg.
Oracle, MySQL, DB2) and the schema should not be required. In order to achieve transparency,
there is a need for Grid database management middleware that performs the translation of the

dave.pearson@oracle.com 17

GFD-1.13 March 2003

application’s access request into a local database instance request, much like a disk driver
translates the user's generic operating system commands into manufacture-specific ones. The
Grid database management middleware must expose a common view of the data stored in the
schemas of the underlying database instances. Managing the common Grid layer schema and its
mapping to the instance schemas is a nontrivial functionality of Grid database management
middleware.

Grid enabled databases will be more prone to denial of service type attacks than independent
databases due to the open access nature of the Grid. Current DBMSs can place quotas on CPU
consumption, total session time and tablespace sizes. A session can be automatically terminated
in the event of excessive CPU consumption, and tablespace quotas can prevent excessive data
insertion. Grid database management services must interact with the DBMSs and possibly the
underlying hardware to allocate time and resources to queries, and to ensure that ad-hoc Grid
based use does not create a denial of service situation.

The scope of the DAIS working Group does not specifically include the standardisation of
interfaces to management tools. However, standards should be developed in a way that takes
account of the requirements of management components.

5.9 Data Replication

Data replication can play a key role for performance and availability of data in the Grid.
Replication can be applied to all types of data: databases, files, binaries, etc. Replication may be
used: to distribute data for scaling a data intensive workload; to consolidate data from multiple
sources, as in a data warehouse for analysis; to cache data from one or more data sources to
improve access times, reduce network bandwidth requirement and provide better availability; to
checkout data from one or more sources for data analysis or collaboration; to make replicas for
disaster recovery; or to clone binaries, e.g., OS, middleware or applications.

In the Grid, a replication service may be invoked dynamically by schedulers or workload
managers to perform just-in-time replication in concert with the allocation of compute resources.
The notion of replication quality of service (QoS) is defined as the latency of end-to-end data
propagation from the source to the target from an application’s standpoint. Examples of end-to-
end latency are: (i) the time between when updates are committed on the source, and
subsequently those updates are committed at the target; and (ii) the time between when query
results are produced and are committed on the target. Factors involved in end-to-end latency are:
capturing updates at the source, processing to buffer data on the network channel, network
latency, queuing, transformations, applying of updates at the target, etc. A replication service may
monitor QoS and may interact with resource managers to meet user-specified goals.

It is important to track replicas [Foster 02b]. For example, schedulers may choose to schedule
tasks on the nodes where the required data already exists and satisfies currency requirements.
The database optimizer may take advantage of replicas to speed up a query by performing local
data access. Note that for database exploitation it is also important to track the schema version
when a replica is made, and the currency of a replica.

We now describe what current database products [DB2, Oracle] provide, and what they lack for
the Grid environment. They provide support user specification of the source, target, filters and
transformations to be performed during replication.

A Capture program on the source:

e captures updates by reading the database log so that it is non-intrusive to the
workload,

o filters and subsets the columns that need to be sent to the target, and

e sends updates to the Apply program on the target using a point-to-point channel or a
staging area.

dave.pearson@oracle.com 18

GFD-1.13 March 2003

An Apply program applies the updates logically (e.g., via SQL interface) at the target, auditing the
subscription. Detection of failure and recovery is the responsibility of the Capture and Apply
programs themselves.

Recent advances in DBMS, whereby one or more columns of an SQL table can have file
references [Michel 01, Melton 00], allow replication of files and their associated data (in the
database) transactionally. A column can be annotated to indicate that it references a file. The
replication source sends this annotation and the column value, which is typically the url of the file.
As the Apply program notices the annotation, it first replicates the file with possible file name
transformation, modifies the column value with the transformed filename, and then updates the
target database.

For the Grid, current approaches could be enhanced considerably, from both engineering and
functional standpoints. For example, effective function componentization would simplify
development of the Capture and Apply programs. Functional extensions could include: dynamic
subscription for just-in-time replication; specification of QoS requirements; support for replica
catalogues; support for replication of files and associated metadata in the database with
consistency; and flow control that handles variable target speeds, etc.

With federated database technology [Haas 02, Melton 00], query results from several relational
and non-relational data sources can be joined, aggregated or reshaped and then applied to one
of several relational databases at the target. For details of a proposed Data Replication service
for the Grid, see [Gavacs 02].

In terms of service interfaces, there is a requirement for interface definitions that allow consistent
creation, description and maintenance of replicated data on the Grid. The GGF seems like a
suitable forum for the standardisation of such interfaces. The scope of the DAIS working group
includes defining standards for data services which provide the capability to perform core
replication functionality through data definition, manipulation, and transport operations. The
Working Group will ensure that the Data Replication Research Group is aware of identified
requirements for database replication.

5.10 Sessions and Connections

The concept of managing database interactions through sessions and connection is well
established in DBMS technology. In a Grid setting it may prove useful to apply the same concepts
for managing the context of interactions between data services and one or more databases.

The lifetime of a Grid data service could be defined by a “session” which is created when a data
service is instantiated and lasts until the service is destroyed. All interactions between the user
and the service would be within the scope of a particular session. However, it is anticipated that a
session could outlive the lifetime of the individual communication links between the user and the
service, for example when the output to transported asynchronously to a third party endpoint. In
the case of Grids, it may be desirable to regain access to a previous session, but this capability
should probably be specific to the original service, as regaining a session may have security
implications on some authentication/authorisation mechanisms.

Within the lifetime of a session, the service may open and close one or more connections to a
specific database instance and may hold a number of connections at the same time. On this
basis, the lifetime of a corresponding “connection” would be limited to that of the session
containing it. Given that data services are instantiated to interact with databases, an implicit
connection should be assumed when the session is created. Equally, all connections should be
closed when a service is destroyed. It is anticipated that the service may perform multiple data
operations during a single connection and that the connection context may support transaction
management. However, the implementation should determine whether a connection can/cannot
participate in a transaction.

dave.pearson@oracle.com 19

GFD-1.13 March 2003

The scope of the DAIS Working Group includes investigating further the role of connections and
sessions in database services. This will be done through an open issues log which the Working
Group is creating as a place where all DIAS issues can be raised and addressed.

5.11 Integration

One of the aims of the Grid is to promote the open publication of scientific data. If this is realized
then it is expected that many of the advances to flow from the Grid will be from applications that
combine information from multiple data sets. An investigation into the requirements of early Grid
projects has concluded that the prospect exists for millions of data resources and petabytes of
data being accessible in a Grid environment [Pearson 02]. Support for federating data resources
is therefore vital to the success of the Grid — the alternative of forcing each application to interface
directly to a set of databases and resolve federation problems internally would lead to application
complexity, and duplication of effort.

Database federation has been comprehensively studied [Sheth 90], and implementations are
available from vendors. However, these are unlikely to meet the needs of all Grid applications —
the factors that make Grid database federation different include:

e Highly dynamic federations. On the Grid, many applications will dynamically select a set
of databases to access based on the results of queries of metadata catalogues. This, and
the fact that the set may be very large, places a premium on fully automatic federation
without user input. This needs resolution at the interface level (how can the federation
middleware communicate with the different interfaces offered by the databases to be
federated?) and the semantic level (how is data to be interpreted so that it can be
integrated?).

o Extreme performance. A query that joins data from a set of very large databases could
have huge network, CPU and disk |10 requirements. Therefore, a scalable performance
solution is required, and the Grid offers opportunities for providing it: Grid-resources can
be dynamically acquired in order to meet the performance requirements of the query,
while the application of parallel query execution techniques [Smith 02] across the Grid
could provide scalability.

o Alternative source selection. Replica management systems will provide alternate sources
of the same data. The selection can be made on the basis of availability (e.g., in the
presence of failure), performance and cost.

o Exploiting the Semantic Grid. The aim of the Semantic Grid [De-Roure 01] is to provide
metadata that assists in the machine interpretation of data. This can be exploited in
schema integration, e.g. in identifying sets of relational columns whose data has the
same interpretation.

e Use of Grid standards and services. Federation middleware will have to conform to the
emerging OGSA if it is to be seamlessly integrated with other Grid services. This will
ensure a standard security interface, and offer opportunities to exploit other appropriate
services such as those for efficiently transferring large amounts of data. The role of Grid
standards becomes of prime importance if the approach advocated in this paper —
wrapping DBS so that they offer standard, OGSA conformant database services — is
taken. If this is the case, then the federation middleware can interrogate the service
metadata to determine what level of interfaces each database provides (e.g., the query
language supported) and, if possible, generate a new single, “virtual” database service
interface that represents their federation. This can be done on a service-by-service basis
— while federated query services are likely to be the most important, a whole range of
other services offered by databases will need to be federated for some applications,
including transactions, metadata, notification, accounting and scheduling.

dave.pearson@oracle.com 20

GFD-1.13 March 2003

The scope of the DAIS Working Group does not specifically include the standardisation of
interfaces for data integration services. However, the standards should be developed in a way
that takes account of the requirements of information integration services.

6. Conclusions

This document has provided an overview of requirements and functionalities for Grid Database
Access and Integration Services. It is not claimed that the requirements are complete. Nor is it
claimed that the functionalities described are: (i) sufficient to address all the requirements (they
are clearly not); or (ii) partitioned in a way that directly reflects how they should be standardized.

There are several important issues that must be addressed within the DAIS Working Group to
enable standards to be brought forward through the GGF, which it is hoped this document will
help to address. These include:

1. Priorities: what functionalities of relevance to DAIS are all of: (i) widely recognised as
important; (ii) reasonably well understood; and (iii) not the subject of existing
standardization activities elsewhere. Such functionalities are candidates for
standardization within the DAIS Working Group or elsewhere in the GGF.

2. Scope: what functionalities of relevance to DAIS are within the remit of the DAIS Working
Group? As database access and integration services overlap with many other areas
(security, replication, data transport, etc), certain issues are likely to be addressed in
interactions across several GGF groups.

3. Granularity: how much ground should be covered by any one proposal for a standard.
For example, there are clear relationships between statements and transactions, but
equally much can be said about each of these functionalities that is orthogonal to the
other. While specific proposals for standards are likely to have champions, it will be good
if the community is able to reach broad agreement on the nature and scope of individual
proposals early in their development.

dave.pearson@oracle.com 21

GFD-1.13 March 2003

7. References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Atkinson, et al., Web Services Security (WS-Security), Version 1.0, Available from:
http://www-106.ibm.com/developerworks/library/ws-secure/, 2002.

J. Bester, |. Foster, C. Kesselman, J. Tedesco, S. Tuecke, GASS: A Data Movement and
Access Service for Wide Area Computing Systems, 6" Workshop on I/O in Parallel and
Distributed Systems, 1999.

R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer and V. Welch, IEEE
Computer, 33(12), 60-66, 2000.

F. Cabrera, G. Copeland, W. Cox, T. Freund, J. Klein, A. Storey, S. Thatte: Web Services
Transaction (WS-Transaction), http://www-106.ibm.com/developerworks/library/ws-
transpec/, 2002

F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D. Orchard, J. Shewchuk,
A. Storey: Web Services Coordination (WSCoordination),
http://www106.ibm.com/developerworks/library/ws-coor/, 2002

DB2 Universal Database, Replication Guide and Reference, IBM, Available From:
http://www-3.ibm.com/software/data/dpropr/library.html.

D. De-Roure, N. Jennings, N. Shadbolt and M. Baker, Research Agenda for the Semantic
Grid: A Future e-Science Infrastructure, www.semanticgrid.org, 2001.

EDG Grid Data Management http://cern.ch/Grid-data-management/.

Foster, C. Kesselmam, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, http://www.globus.org/ogsa/,
2002a.

Foster et al, Giggle: A Framework for Constructing Scalable Replica Location Services,
2002b.

lan Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. In INTERNATIONAL JOURNAL OF .
SUPERCOMPUTER APPLICATIONS, 15(3), 2001.

N.J Gavacs, S. Glanville, S. R. Jeffery, J.P. Mcalister, I. Narang, V. Raman, Data
Replication Service in Grid, IBM Technical Report (in progress), 2002.

Krause, K. Smyllie and R. Baxter, Grid Data Service Specification for XML Databases,
Edinburgh Parallel Computer Centre Report: EPCC-GDS-WP3-GXDS 1.0, Version 1.0,
2002.

H. Kreger, Web Services Conceptual Architecture, Technical Report WCSA 1.0, IBM
Software Group, 2001.

L. Haas, E Lin, M. Roth, Information Integration through Database Federation, to appear
in IBM Systems Journal, November 2002.

J. Heflin, R. Volz and J. Dale, Requirements for a Web Ontology Language, W3C
Working Draft, http://www.w3c.org/TR/webont-req, March, 2002.

R. Michel, et al., Data Links Managing Files using DB2, http://www.ibm.com/redbooks,
2001.

J. Melton et al, SQL and Management of External Data. Also ISO/IEC 9075-9-2000,
Information Technology — Database Languages — SQL — Part 9: Management of External
data (SQL/MED).

dave.pearson@oracle.com 22

GFD-1.13 March 2003

19. OMG - Additional Structuring Mechanisms for the OTS Specification. Technical Report
ORBO0S/2000-04-02, Object Management Group, 2000.

20. N.W. Paton, M.P. Atkinson, V. Dialani, D. Pearson, T. Storey and P. Watson, Database
Access and Integration Services on the Grid, UK e-Science Programme Technical Report
Number UkeS-2002-01, 2002.

21. Oracle Streams, Technical White Paper, Available from:
http://technet.oracle.com/products/dataint/content.html, June 2002

22. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke, A Community Authorization
Service for Group Collaboration, Submitted to 3™ Intl. Workshop on Policies for
Distributed Systems and Networks, 2001.

23. D. Pearson, Data Requirements for the Grid: Scoping Study Report, Presented at GGF4,
Toronto, http://www.cs.man.ac.uk/grid-db, 2002.

24. V. Raman, |. Narang, C. Crone, L. Haas, S. Malaika, C. Baru, Data Access and
Management Services on Grid, Presented at GGf5, Edinburgh, 2002

25. A.P. Sheth and J.A. Larson, Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases, ACM Computing Surveys, 22(3), 183-236,
1990.

26. J. Smith, T. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes and R. Sakalleriou,
Distributed Query Processing on the Grid, 3rd Int. Workshop on Grid Computing,
J.Sterbenz, O.Takada, C.Tschudin, B.Plattner (eds.), Springer-Verlag, 279-290, 2002.

27. Spitfire project: http://cern.ch/hep-proj-spitfire.

8. Change Log

8.1 Draft 1 (1% July 2002)
Produced for discussion in DAIS Working Group session at GGF5

8.2 Draft 2 (4™ October 2002)
Revisions to all sections following feedback from GGF5 session
e Points of clarification

e Scope of DAIS Working Group activities introduced in Functionalities section

8.3 Draft 3 (17" February 2003)
Revisions to all sections following feedback from GGF6 session
e Renumbering of sections
e Rewriting and restructuring of Sections: 3.7, 3.9, 4, 5.1, 5.5, 5.9

e Linkage introduced between Requirements and Functionalities, Sections 3 and 5
respectively

o References updated

e Change Log added

dave.pearson@oracle.com 23

GFD-1.13

Security Considerations
See Section 5.6.

Author Information

Malcolm P Atkinson,
National e-Science Centre,
15 South College Street,
Edinburgh EH8 9AA, UK.
email: mpa@nesc.ac.uk.

Vijay Dialani,

Dept. of Electronics and Computer Science,

University of Southampton,
Southampton SO17 1BJ, UK.
email: vkd00r@ecs.soton.ac.uk

Leanne Guy,

IT Division,

CERN 1211,

Geneve 23,
Switzerland
Leanne.Guy@cern.ch

Inderpal Narang,

IBM Almaden Research Centre,
650 Harry Road,

San Jose, CA95120,

USA

Norman W Paton,

Department of Computer Science,
University of Manchester,
Manchester, M13 9PL, UK.

email: norm@cs.man.ac.uk

Dave Pearson,

Oracle UK Ltd., Thames Valley Park,
Reading RG6 1RA, UK.

email: dave.pearson@oracle.com

Tony Storey,
IBM United Kingdom Laboratories,

Hursley Park, Winchester, SO21 2JN ,

email: tony storey@uk.ibm.com

Paul Watson,
Department of Computing Science,
University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK.

email: Paul.Watson@ncl.ac.uk

dave.pearson@oracle.com

UK.

24

March 2003

GFD-1.13 March 2003

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
SUCCEeSSOrs or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

dave.pearson@oracle.com 25

