GFD-I.145 Authors Enterprise Grid Requirement (EGR) RG http://forge.gridforum.org/projects/egr-rg/ Ravi Subramaniam, Intel Toshiyuki Nakata, NEC Satoshi Itoh*, AIST Yoshio Oyanagi, Kogakuin University Toshio Oyanagi, Rogakuin Oniversity Atsuko Takefusa, AIST Tokuro Anzaki, Hitachi, Ltd. Ken-ichi Mizoguchi, Toshiba Solutions Corporation Hideaki Tazaki, Fujitsu Limited Takuya Mori, NEC Corporation Toshihiro Suzuki, Oracle Corporation Japan Masahiko Hamada, IBM Japan, Ltd. Takashi Maeshiro, First Riding Technology Inc. Hiroyuki Takashima, Novartis Pharma K.K. Masahiro Yoshioka, Mazda Motor Corporation February 14, 2009 # Guidelines of Requirements for Grid Systems v1.0 ### Status of This Document This memo provides information to the Grid community on guidelines of requirements for Grid systems. It has recommendations on the designing grid systems. Distribution is unlimited. ### Copyright Notice Copyright © Open Grid Forum (2008). All Rights Reserved. ### Abstract This document describes the requirements for construction and operation of grid systems. This document does not say "Grid Systems must satisfy these requirements". It says "These requirements shall be considered when someone designs / constructs / operates on Grid Systems". egr-rg@ogf.org Corresponding Authors # **Contents** | 1. | Intro | oduction | .3 | |-----|-------|------------------------------|----| | 1 | .1 | Scope of the document | .3 | | 2. | Terr | ns and Definitions | .4 | | 2 | 2.1 | Service | .4 | | 2 | 2.2 | Supplier | .5 | | 2 | 2.3 | Consumer | .5 | | 2 | 2.4 | Access | .5 | | 2 | 2.5 | Agreement | .5 | | 2 | 2.6 | Control | .5 | | 2 | 2.7 | Usability | .5 | | 2 | 8.2 | Controllability | .5 | | 2 | 2.9 | Confidentiality | .5 | | 2 | 2.10 | Integrity | .5 | | 2 | 2.11 | Availability | .6 | | 2 | 2.12 | Policy | .6 | | 3. | Gric | System Model | .6 | | 4. | Rec | uirements for Grid System | .6 | | 4 | .1 | Access | .6 | | 4 | .2 | Agreement | .7 | | 4 | .3 | Control | .7 | | 4 | .4 | Cooperation between Systems | .8 | | 5. | Con | tributors | .8 | | 6. | Inte | llectual Property Statement1 | 10 | | 7. | Disc | claimer1 | 10 | | 8. | Full | Copyright Notice | 10 | | App | pendi | x1 | 1 | # 1. Introduction This standard describes requirements to be considered in integration and operation of grid systems that effectively provide services by virtualizing and flexibly assigning, collaborating and using various resources including computers, storages and networks in accordance with different purposes. In order for the systems to effectively function, clarification and operational management of many related activities are required. In grid systems suppliers provide services to consumers, and in many cases consumers themselves may become suppliers and provide services to other consumers. Coordinated construction and operation of grid systems generate opportunities for ongoing management, greater efficiency and continual improvement. This standard is assumed to target people who use and operate grid systems. # 1.1 Scope of the document This standard specifies requirements for construction and operation of grid systems of an acceptable quality for customers. This standard may be used by the following business enterprises, organizations and applications. - a) Organizations who design, construct and operate grid systems - b) Commercial Data Centers that provide hosting and housing services as their business. - c) Service providers who provide applications, IT resources and others. - d) Organizations that mediate various information services This standard, as Figure 1 shows, defines a grid system as a hierarchical structure that consists of four layers. The first layer is the physical environment layer that consists of hardware components associated with servers, storages and networks. The second layer is the operating environment layer that consists of a number of software such as an operating system and a file system that makes the first layer operable. The third layer is the platform layer that consists of a number of softwares to achieve operations over multiple components such as database and grid middleware. The forth layer is the application service layer that consists of applications and portals. Consumers who use the forth layer are called end-users. # **Grid System** Figure 1: Hierarchy Diagram of the Grid System Suppliers operate the entire or a part of grid system and provide them as services to consumers. Consumers may add components of hardware or software where needed. In this case consumers become suppliers who provide services with added components to other consumers. As Figure 2 shows, such pairs of suppliers and consumers are concatenated to form a chain and the consumers at the end are called end-users. Although end-users access to services through the forth layer, there may be services without the forth layer. This standard applies to a pair of a supplier and consumer and the service provided between them. Figure 2: Chain of Supplier and Consumer Requirements included in this standard are limited to minimal and therefore, addition of any requirement that is needed to satisfy the needs of a specific business may be considered. The way requirements in this standard are implemented to achieve the entire objective depends on the characteristics of the relations between suppliers and consumers. ### 2. Terms and Definitions Terms those are used in this document is explained in this chapter. ### 2.1 Service A system provided by a supplier is called a service. Note: A service may corresponds to both the entire grid system and a part of grid system. In other words, multiple services provided by multiple suppliers may be integrated to form one grid system. # 2.2 Supplier A supplier is a person who provides either the entire or a part of a grid system as a service. Note: Suppliers include system operators and they use this standard from the standpoint of designer and operator of systems. Multiple suppliers are present in a grid system that consists of multiple services. ### 2.3 Consumer A consumer is a person who makes use of a service provided by a supplier. Note: The consumer may refer not only to a person but a part of a system. This means that services provided in the layers below the forth layer may be accessed directly by the components in the upper layer that a consumer has added. Furthermore, consumers may not necessarily be the members of a single organization and members of a virtual organization that consists of multiple organizations are also treated as consumers. ### 2.4 Access Access is an operation for consumers to directly use the services under their privileges. Note: Submissions of jobs to computing resources and writing records to database resources correspond to this operation, for example. ### 2.5 Agreement Agreement is an operation of consumers that enable indirect use of services by making requests to suppliers to implement processes that consumers have no privilege to implement. Note: Change of priorities of job submissions to computing resources and retrieval of log data of submitted jobs and database access correspond to this operation, for example. #### 2.6 Control Control is an operation by suppliers to manage/operate services. Note: Allocation of resource for each consumer, setting of priority and configuration of consumer access privilege to resources correspond to this operation, for example. ### 2.7 Usability This term indicates the characteristics related to ease of use from the viewpoint of consumers. Note: This does not only mean "availability". ### 2.8 Controllability The term indicates the characteristics related to ease of use and control from the viewpoint of supplier. Note: This does not only mean "ability to control". ### 2.9 Confidentiality The term indicates the property that information or information processing/storing system is not made available or disclosed to unauthorized consumers. ### 2.10 Integrity The term indicates the property of safeguarding the accuracy and completeness of information or information processing/storing system. # 2.11 Availability The term indicates the property of being accessible and usable to information or information processing/storing system upon demand by an authorized consumer. # 2.12 Policy The term refers to the content specified for the way of allocating services in advance. Note: This is used for the purpose of data sharing that do not have effect on the load distribution, prioritized processing for each consumer, prioritized processing for each access and other consumers of the service. Policies include operation policies for suppliers to manage and operate services and usage policies for consumers to use services. # 3. Grid System Model Types of operations performed between suppliers, consumers and services are shown in Figure 3. Actions that suppliers implement against services are operations to manage services and therefore called "control". Actions that consumers implement against services are classified two ways. One is the direct operation performed using consumers' own privileges and this is called "access". The other is the indirect operations performed by making requests to suppliers to implement some process and this is called "agreement". This "agreement" includes disclosure of service information and prioritization of executions. Requirements for "access", "agreement" and "control" are described in 4.1, 4.2 and 4.3 respectively. There is a case where a grid system is used in cooperation with other external grid systems. Requirements for grid systems in such case are described in 4.4. Figure 3: Operations between Supplier, Consumer and Service # 4. Requirements for Grid System This section describes requirements those are required to be investigated for Grid System. Requirements are categorized by kinds of players and operations. ### 4.1 Access ### 4.1.1 Usability The following items shall be considered as requirements from a usability point of
view when consumers access services. - a: Consumers can access services without being aware of the lower level layers (including location, OS and middleware) (layer 4) - b: Services are accessible using a uniform interface (layer 3, 4) - c: Access protocols to services are selectable where there is more than one access protocol present (layer 2, 3) - d: Existing applications are operable without any change (layer 3, 4) - e: When more than one authentication mechanism is present, only a minimal authentication mechanism is required (layer 3, 4) - f: Expected performance of the system is estimated in advance. (layer 2, 3, 4) ### 4.1.2 Security The following items shall be considered as requirements from a security point of view when consumers access services. - a: Consumers and services are mutually authenticated (layer 3) - b: Confidentiality, completeness and availability of accesses to services by consumers are guaranteed (layer 3, 4) - c: Confidentiality, completeness and availability of contents such as data generated by accesses to services by consumers is guaranteed (layer 3, 4) - d: Logs of access to services by consumers can be recorded (layer 3, 4) - e: Confidentiality, completeness and availability of access logs to services by consumers can be guaranteed (layer 2, 3, 4) ### 4.2 Agreement ### 4.2.1 Usability The following items shall be considered as requirements from a usability point of view when consumers perform agreement-related operations against services according to service levels. - a: Static information including configuration information and performance of services is disclosed to consumers (layer 2, 3) - b: Dynamic information including load status, processing capacity and failure of services is disclosed to consumers (layer 2) - c: Consumers can configure usage policies for each service individually at the time of usage (layer 2, 3) - d: Consumers can view a record of service level (layer 2, 3) ### 4.2.2 Accounting The following item shall be considered as a requirement from the accounting point of view when consumers perform agreement-related operations against services. a: Accounting information such as log data of services used by consumers are disclosed to consumers (layer 3) ### 4.2.3 Security The following items shall be considered as requirements from the security point of view when consumers perform agreement-related operations against services. - a: Confidentiality, completeness and availability of operations related to agreements implemented by consumers to services can be guaranteed (layer 3) - b: Confidentiality, completeness and availability of information including usage history and accounting generated by operations on agreements implemented by consumers to services can be guaranteed (layer 3) ### 4.3 Control ### 4.3.1 Controllability The following items shall be considered as requirements from the controllability point of view when suppliers perform control-related operations against services. - a: Priorities configured by and for each consumer are configurable (layer 3) - b: Services have the mechanism that users can access services without being aware of lower level layers (including location, OS and middleware) (layer 3) - c: Resource allocation is dynamically altered according to suppliers' operation policy (layer 3) - d: Management items required to construct and operate upper level layers are configurable (layer 2, 3) - e: Suppliers can monitor status of services (including failure and risk) by inquiry or notification (layer 1, 2, 3) - f: Suppliers can view access status of consumers (layer 2, 3) - g: Policies for service allocation are configurable with regard to consumer access(layer 2, 3) - h: Services include a mechanism to easily perform maintenance (layer 2, 3) - i: Configuration change, expansion and destroy of services can be performed according to service levels without halting the whole system (layer 2, 3) - j: Suppliers can easily monitor status of the whole services (layer 1, 2, 3) ### 4.3.2 Accounting The following item shall be considered as a requirement from the accounting point of view when suppliers perform control-related operations against services. a: Usage history of consumers is viewable by suppliers (layer 2, 3) ### 4.3.3 Security The following items shall be considered as requirements from the security point of view when suppliers perform control-related operations against services. - a: Suppliers and services can be mutually authenticated (layer 3, 4) - b: Confidentiality, completeness and availability of services can be guaranteed (layer 2, 3) - c: Confidentiality, completeness and availability of operations related to controls implemented by suppliers to services can be guaranteed (layer 2, 3) - d: Confidentiality, completeness and availability of contents generated by operations related to controls implemented by suppliers to services can be guaranteed (layer 2, 3) - e: Logs for controls implemented by suppliers to services can be recorded (layer 2, 3) - f: Confidentiality, completeness and availability of operation logs related to controls implemented by suppliers to services can be guaranteed (layer 2, 3) - g: Suppliers can configure security policy of services (layer 2, 3) # 4.4 Cooperation between Systems The following items shall be considered as requirements when a service cooperates with an external grid system. - a: Ways to establish mutual trust relations are specified (layer 2, 3) - b: Each other's services are cooperable (layer 2, 3) ### 5. Contributors This document was originally developed by "Grid Computing Industrial Guidelines Standardization Committee" on February 2008. The committee was organized in 2005 by AIST and was funded by METI through INSTAC from FY 2005 to FY 2007. AIST: National Institute of Advanced Industrial Science and Technology METI: Ministry of Economy, Trade and Industry INSTAC: Information Technology Research and Standardization Center, JSA (Japanese Standards Association) ### Author Information Ravi Subramaniam Intel Corporation Toshiyuki Nakata Common PF SW Laboratories, NEC Satoshi Itoh* (corresponding author) Information Technology Research Institute, AIST Email: satoshi.itoh@aist.go.jp Yoshio Oyanagi Kogakuin University Atsuko Takefusa Information Technology Research Institute, AIST Tokuro Anzaki Hitachi, Ltd. Ken-ichi Mizoguchi Toshiba Solutions Corporation Hideaki Tazaki Fujitsu Limited Takuya Mori Service Platforms Research Laboratories, NEC Corporation Toshihiro Suzuki Oracle Corporation Japan Masahiko Hamada IBM Japan, Ltd. Takashi Maeshiro First Riding Technology Inc. Hiroyuki Takashima Novartis Pharma K.K. (present position: MasterControl KK) Masahiro Yoshioka Mazda Motor Corporation # 6. Intellectual Property Statement The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat. The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director. ### 7. Disclaimer This document and the information contained herein is provided on an "As Is" basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose. # 8. Full Copyright Notice Copyright (C) Open Grid Forum (2008). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees. # **Appendix** The requirements described in this document were extracted from several grid systems. The following grid systems were investigated for this purpose. - a) In-house technical computing grid (Computing grid cluster -): semiconductor, automobile, construction - b) In-house technical computing grid (PC grid): Novartis (pharma) - c) In-house data grid: financial company - d) Academic collaborative grid (Computing grid): APGrid (Asia Pacific Grid testbed) - e) Commercial data center grid (Business computing grid): Mazda operates Business Grid PJ in Japan on a trial basis - f) Commercial data center grid (Commercial storage service): FRT(Data Center Company) In addition, the following use cases were picked up for applying the guideline. These use cases were presented in the past EGR-RG sessions of OGF/GGF. - a) Fleet Numerical by Platform Computing - "US Navy's Fleet Numerical Meteorology and Oceanography
Center", Nick Werstiuk, (Platform Computing) @ GGF18 - b) Financial Service by HP and Hartford - "Grid for Financial Services", Larry Ryan, (Hewlett-Packard), and Robert Nordlund, (Hartford) @ GGF18 - c) SURAgrid (regional cooperative grid) - "Building a Campus Grid: Concepts & Technologies", Mary Fran Yafchak (SURA)@GGF18 Examples of requirements for typical grid systems are summarized in the following tables. This table is expected to be used as a reference. Note: Even though the table is not fully filled, it is attached for a reference. | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | Numerica
I by | Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |------------|-------------------|-----------------|-----------|--|--|---|---|------------------|--|--|--|---|---|--| | | | 4.1.1− a | 4 | Consumers can access services without being aware of the lower level layers (including location, OS and middleware) | virtualiz
ation
technolo
gy | Job submission to execute application and retrieval of result are possible without being aware of the location of resources to be executed and the OS used. (necessary) | Multi
site,
heteroge
neous
platform | Multi
site | _ | Job submission to execute application and retrieval of result are possible without being aware of the location of resources to be executed (compute server, data) and the OS used. (necessary) | Across Departments on a campus or Across Institutions for access to other campuses' resources | It is available
without being
aware of the
location of
services.
(necessary) | Storage resources are virtualized, and the way of accessing their logical location and interface is provided. Namespace and access method of resources are logically provided and therefore they will not be recognized by consumers when physical resources are changed. | Job
submission
to execute
data
reference
and retrieval
of result are
possible.
(necessary) | | Acc
ess | Usa
bilit
y | 4.1.1−b | 3,4 | Services are
accessible
using a
uniform
interface | d | Job execution can be requested from the same interface without relying on the OS and middleware of compute resources. | single
'console
' across
locations | | N/A | Uniform
interface to
heterogeneo
us computer
is provided
(necessary) | Portal
accessibility | Uniform
interface to
the services
is provided.
(necessary) | Either data and files to storages, and access and control of database are standardized or they are provided by the interface that aims to be industry standard. | Access to
database is
possible
from a
uniform
interface.
(optional) | | | | 4.1.1-c | 2,3 | Access
protocols to
services are
selectable
where there
are more than
one access
protocols
present | | N/A | | | N/A | n/A | Portal test
scripts
(https://gridporta
l.sura.org/gridsph
ere/dist/sgGridT
est.html)
represent several
Globus based
protocols. | N/A | Access methods of storage provided are virtualized and multiple selections are possible. Specifically, the following access methods are possible. <block> <file> *iSCSI *NFS *FC-SAN *CIFS *SATA *SMB *SAS : :</file></block> | N/A | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |------------|------------------|-----------------|-----------|---|---|---|--|---|---|--|---|---|---|---| | | Usa
bilit | 4.1.1− d | 3.4 | Existing
applications
are operable
without any
change | | It can be used
without
changing
commercial
applications. | | Ability to
minimize
applicati
on
changes
to take
advantag
e of a
Grid-
based
infrastru
cture | N/A | Programs by
users can be
used.
(necessary)
It can used
without
changing
commercial
applications.
(preferable) | Once an application has been gridenabled and deployed to a SURAgrid site, it should be able to run at other sites which have appropriate environment (cf. libraries or versions.) Should also be able to minimize applicatiions changes to take advantage of campus grid infrastructures that are interconnected (moving smoothly between campus grid and regional grid). | N/A | Compatible systems for each system of DB, contents, files and block that existing applications use are provided and they are available for use without restructuring applications. | It can be
used without
changing
commercial
applications. | | Acc
ess | у | 4 .1.1−e | 3,4 | When more
than one
authentication
mechanisms
are present,
only a minimal
authentication
mechanism is
required | Realized
by
single
sign-on
technolo
gy
(Proxy
certifica
te and
delegati
on) | Access to multiple computer systems is possible without multiple signing—in.(necessary) | | | Access to
multiple
computer
systems is
possible
without
multiple
signing—
in.(necessary | Access to
multiple
computer
systems is
possible
without
multiple
signing—
in.(preferable
) | Use of cross-
certification
processes and
SURAgrid
BridgeCA
leverages campus
identity systems,
enabling
consumers to use
their campus ID
for access and
faciltiating
scalable inter-
institutional
authentication. | management
systems is
possible
without
multiple
signing—
in.(necessary
) | When multiple systems are involved in authentication, authorization and signature of access to storage system, it can collaborate with multiple authentication systems or with a system that integrates them. | Access to multiple computer systems is possible without multiple signing—in.(necessary) | | | | 4.1.1-f | 2,3, | Expected performance of the system is estimated in advance. | | | | Real-
time
calculati
on is a
competit
ive
advantag
e | | | No performance estimates are provided to consumers at this time but this is desirable and tools to provide this exist/are emerging. | | | | | | Sec
urit
y | 4.1.2-a | 3 | Consumers
and services
are mutually
authenticated
 | | Military
Security | | | | GSI security identifies both hosts (suppliers) and consumers. Systems (cluster resources, portals, user management store) and end users require authentication using PKI credentials. | | | | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | Numerica
I by | Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |---------|------------------|-----------------|-----------|--|--|--|----------------------|------------------|--|---|--|--|---|--| | | | 4 .1.2−b | 3,4 | Confidentiality,
completeness
and availability
of accesses to
services by
consumers are
guaranteed | Policy
control | To which computers consumers are accessing is not open to other consumers. Range of computers available to consumers is controllable. | Military
Security | | Range of
computers
available to
consumers is
controllable. | Communicati
on channels
of accesses
are
encrypted.
(preferable)
Range of
computers
available to
consumers is
controllable.
(necessary) | secure (uses
Globus Grid
Security
Infrastructure) | | Encryption mechanism which complies with SLA is provided to the interface that provides storage infrastructure service. Policy on storage access can be configured in accordance with SLA contract. | Content of Requirement s is protected on the server (managemen t node) which distribute requirements to database resources (database node). (necessary) Range of computers available to consumers is controllable. | | Acc ess | Sec
urit
y | 4.1.2-c | 3,4 | Confidentiality, completeness and availability of contents such as data generated by accesses to services by consumers is guaranteed | | Jobs and data are protected from other consumers on the server (management node) which distributes jobs to compute resources (compute node). (necessary) | Military
Security | | Jobs and data are protected from other consumers on the server (management node) which distributes jobs to compute resources (compute node). (necessary) | Jobs and data are protected from other consumers on the server (management node) which distributes jobs to compute resources (compute node). (preferable) | secure | | Completeness of access control, encryption and electronic signature which can maintain confidentiality of information in storage between consumers and between consumers and suppliers is guaranteed in the scope of SLA. | Requirement
s and data
are
protected on
the server
(managemen
t node)
which
distribute
requirements
to database
resources
(database
node).
(necessary) | | | | 4.1.2-d | 3,4 | Logs of
access to
services by
consumers
can be
recorded | | | Military
Security | | | | secure | | | | | | | 4.1.2−e | 2,3,
4 | Confidentiality,
completeness
and availability
of access logs
to services by
consumers
can be
guaranteed | | Other than
administrators
can not
access to logs
of job manager
and portal
servers. | Military
Security | | s can not
access to
logs of job | Other than
administrator
s can not
access to
logs of job
manager and
portal
servers. | secure | Other than
administrator
s can not
access to
logs of
business
management
systems and
middleware. | Other than
administrators
can not access
to logs of
storage
management
systems and
middleware. | Other than
administrator
s can not
access to
logs of
database
management
systems and
middleware. | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Financial
Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |-----------------------|-------------------|-----------------|-----------|---|---|---|--|-------------------------------|---|--|---|---|---|--| | | | 4.2.1 –a | 2,3 | Static
information
including
configuration
information
and
performance
of services is
disclosed to
consumers | M onitori
ng | Static information such as configuration information and performance of services is disclosed to consumers.(preferable) | | | Static information such as configuration information and performance of services is disclosed to consumers.(preferable) | Static information such as configuration information and performance of services is disclosed to consumers.(n ecessary) | Allow consumer
or application to
choose resource
(based on
availability, load,
type of resource) | ecessary)
Service level,
indent
information,
problem | information of
storage is
disclosed. | Static information such as configuration information and performance of services is disclosed to consumers.(preferable) | | Agr
ee
me
nt | Usa
bilit
y | 4.2.1−b | 2 | Dynamic information including load status, processing capacity and failure of services is disclosed to consumers | Monitori
ng | Load status of
job manager
queue is
disclosed to
consumers. | | | N/A | Load status
of job
manager
queue is
disclosed to
consumers.
(preferable) | Allow consumer
or application to
choose resource
(based on
availability, load,
type of resource) | Load status
and
performance
status of
services can
be viewed in
real time or
information
is provided
by suppliers. | Dynamic information of storage is disclosed. Dynamic information of storage includes the following. *Volume *free space *statistical performance *underlying index (performance, location): | N/A | | | | 4.2.1− c | 2,3 | Consumers
can configure
usage policies
for each
service
individually at
the time of
usage | Policy
control | Prioritization
can be
performed
between
multiple
consumers or
by a consumer
himself.
(optional) | | | can be
performed
between
multiple | Prioritization
can be
performed
between
multiple
consumers
or by a
consumer
himself.
(preferable) | Usage policies managed by site contributing resource (supplier). Consumer can inspect usage policies. Prioritization may be performed between multiple consumers or by a consumer himself (preferable). | of multiple
tasks can be | Access policy such as use rights is freely configurable against the domain provided by a storage supplier in the scope of SLA with the supplier. | Prioritization can be performed between multiple databases consumers
or by a database consumer himself (optional) | | | | 4.2.1 −d | 4 | Consumers
can view a
record of
service level | Service
-level
manage
ment
Monitori
ng | N/A | | | | N/A | Grid portal tracks and views services from the consumer perspective, leveraging data from back-end usage and accounting mechanisms. | | Consumers can
view number of
access, access
speed and
access
frequency of
storage. | N/A | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | Numerica
I by | Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |-----------------------|--------------------------------------|-----------------|-----------|---|--|---|----------------------|------------------|--|---|---|--|---|--| | Agr
ee
me
nt | Acc
oun
ting | 4.2.2 –a | 3 | Accounting information such as log data of services used by consumers are disclosed to consumers | Logging
Monitori
ng | Usage volume
of services by
consumers are
made available
to consumers.
(necessary) | | | Usage volume of services by consumers are made available to consumers. (necessary) | Usage
volume of
service by
consumers
are made
available to
consumers.
(preferable) | Usage volume of service by consumer is made available to that consumer in process). | Usage
volume of
services by
consumers
are made
available to
consumers.
(necessary) | Consumers of storages can access to dynamic information of system when needed. *Current remaining volume *Usage rate *Back up···· | Usage volume of services by consumers are made available to consumers. (necessary) | | A | | 4.2.3-a | 3 | Confidentiality, completeness and availability of operations related to agreements implemented by consumers to services can be guaranteed | Access | Priority set by consumers are not referenced by other than administrators and manipulated by administrators. | Military
Security | | | Access
privilege set
by
consumers
are not
referenced
by other
than
administrator
s and
manipulated
by
administrator
s.(preferable) | Minimal···relies
upon proper
service file–
system
protections | | Suppliers of storage system can implement similar encryption, authorization and acknowledgemen t to security (authentication, authorization and auditing) according to SLA. | Access privilege set by consumers are not referenced by other than administrator s and manipulated by administrator s. | | Agr
ee
me
nt | Sec
urit
y | 4.2.3-b | 3 | Confidentiality, completeness and availability of information including usage history and accounting generated by operations on agreements implemented by consumers to services can be guaranteed | Access | Usage volume
of services by
consumers are
not referenced
by other than
the
corresponding
consumers.
(necessary) | Military
Security | | Usage volume of services by consumers are not referenced by other than the correspondin g consumers. (necessary) | Usage volume of services by consumers are not referenced by other than the correspondin g consumers. (preferable) | Usage volume of service by consumer is made available to that consumer (in process). | Usage volume of services by consumers are not referenced by other than the correspondin g consumers. (necessary) | Access history
of storage
remains.
Access history,
accounting and
security system
of storage are
associated. | Usage volume of services by consumers are not referenced by other than the correspondin g consumers. (necessary) | | | Con
Con troll
trol abili
ty | 4.3.1-a | 3 | Priorities
configured by
and for each
consumer are
configurable | Priority
manage
ment | Configuration method, in which suppliers can control job execution sequence in accordance with priority set by consumers, is available. | | | N/A | Configuration method, in which suppliers can control job execution sequence in accordance with priority set by consumers, is available. (preferable) | Local policy and technology components factor first in determination of consumer priority. Priority may then be influenced by regional grid participation objectives, MOUs or service agreements. | N/A | Use rights,
encryption and
signature for
each consumer
are configurable
to storage
environment
that storage
infrastructure
services provide. | N/A | | | | 4.3.1-b | 3 | Services have
the
mechanism
that users can
access
services
without being
aware of lower
level layers
(including
location, OS
and
middleware) | virtualiz
ation
technolo
gy | | | | | | Not at this time. | | It is only
available with
interfaces of
storage
infrastructure
services. | N/A | | | | | | | | Guraer | | | | | | | | | |-----|-----------------------------|-----------------|-----------|--|--|--|---|-------------------------------|---|--|--|--|--|---| | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Financial
Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | | | | 4.3.1−c | 3 | Resource
allocation is
dynamically
altered
according to
suppliers'
operation
policy | Policy
control | such as | NWP(Nu
merical
Weather
Predictio
n) jobs to
be
executed
within a
strict
schedule | | s and control
program, and | Annual or
automatic
load
distribution
is possible
depending on
load status
of compute
servers.(pref
erable) | Locally managed via various means. Often done in conjunction with running the specific application (application monitors resources and makes appropriate decisions). | Load
distribution
is possible
depending on
load status
of services.
(necessary) | Volume, type, performance and availability of storages are dynamically allocated according to SLA. This enables provision of storage infrastructure that realizes wide-area distributed RAID and distributed FS. | N/A | | Con | Con
troll
abili
ty | 4.3.1-d | 2,3 | Management
items required
to integrate
and operate
upper level
layers are
configurable | | N/A | | | N/A | N/A | N/A | N/A | Storage infrastructure provided is virtualized, independent from lower level systems and consumers can change access privilege of storage domain. | N/A | | | | 4. 3.1−e | 1,2, | Suppliers can
monitor status
of services
(including
failure and
risk) by inquiry
or
notification | Monitori
ng | Status of each computer system which become a compute resource is monitorable by suppliers through a simple interface.(nece ssary) | | | become a | Status of each computer system which become a compute resource is monitorable by suppliers through a simple interface.(ne cessary) | Portal provides a
level of status
monitoring.
Minimum status
reporting
preferred for all
systems, but not
enforced. | Status of each computer system which become a compute resource is monitorable by suppliers through a simple interface.(ne cessary) | Dynamic
information such
as usage volume
of storage
infrastructure
provided is
monitorable. | Status of each computer system which become a database resource is monitorable by suppliers through a simple interface.(ne cessary) | | | | 4.3.1-f | 2,3 | Suppliers can
view access
status of
consumers | Monitori
ng | Distribution
and status of
jobs submitted
by consumers
can be viewed
by
suppliers.(nece
ssary) | | | and status of
jobs
submitted by
consumers
can be
viewed by | Distribution
and status of
jobs
submitted by
consumers
can be
viewed by
suppliers.(ne
cessary) | Distribution and status of jobs submitted by consumers can be viewed by suppliers locally (necessary) but not necessarily at level of SURAgrid. | N/A | Access
statistics and
evidence of
access can be
viewed while
maintaining
confidentiality of
access contents
of storage
infrastructure
provided. | Distribution
and status
of jobs
submitted by
consumers
can be
viewed by
suppliers.(ne
cessary) | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Financial
Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |--|-----------------------------|-----------------|-----------|---|--|---|---|-------------------------------|---|---|--|---|---|--| | | | 4.3.1-g | 2,3 | Policies for
service
allocation are
configurable
with regard to
consumer
access | Access
control
Policy
control | Conditions for job allocation in each computer system which becomes a compute resource is configurable by suppliers.(preferable) Prioritization between multiple consumers is possible. (optional) | NWP(Nu
merical
Weather
Predictio
n) jobs to
be
executed
within a
strict
schedule | - | Conditions for job allocation in each computer system which becomes a compute resource is configurable by suppliers.(pre ferable) Prioritization between multiple consumers is possible. (optional) | Conditions for job allocation in each computer system which becomes a compute resource is configurable by suppliers.(pre ferable) Prioritization on allocation of performance of the system to be used, usage time, number of units and so on is possible in provision of systems per user or per group. (preferable) | Suppliers configure conditions for job allocation, user privileges. Preemption or other prioritization schemes are possible upon agreement of suppliers. | of tasks of
multiple | Volume of allocatable domain that storage infrastructure provides and policy of availability are freely configurable. | Conditions for allocating requirements in each database system which becomes a database resource are configurable by suppliers. (preferable) Prioritization between multiple database consumers is possible. (optional) | | | Con
troll
abili
ty | 4.3.1− h | 2,3 | Services
include a
mechanism to
easily perform
maintenance | Agent | Maintenance
of environment
such as
deploying
applications to
compute
resources is
easy to
perform. | | | Installation/ maintenance of PC grid middleware to PC/workstati ons, to which grid jobs are executed, is possible.(nec essary) Maintenance of PC grid middleware is performed automatically . (optional) | Maintenance of environment such as deploying applications to compute resources is easy to perform. (necessary) | Performance of maintenance is managed by each supplier; there is a capability (via portal) for verification of basic common services and service status notification to consumers. | N/A | Maintainable environment in back up, mirroring and RAID mechanism of storage infrastructure is provided without affecting consumers. | N/A | | | | 4.3.1 −i | 2,3 | Configuration change, expansion and destroy of services can be performed according to service levels without halting the whole system | | Addition and deletion of compute resources can be performed without halting the whole system. | | | Addition and deletion of compute resources can be performed without halting the whole system. | Addition and deletion of compute resources can be performed without halting the whole system. (Preferable) | SURAgrid is
loosely coupled;
there are
generally
alternative sites
in the event
service at one
site is being
modified. | N/A | The followings are possible for storage infrastructure environment without affecting consumers. *Change of configuration, expansion and withdrawal of partial storage *Operation and halting of partial system *Change of system configuration | N/A | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | l by | 1.2
Financial
Service
by HP
and
Hartford | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |---------|-----------------------------|-----------------|-----------|--|--|--|----------------------|---|--|--|--|---|---
---| | | Con
troll
abili
ty | 4.3.1 −j | 1,2, | Suppliers can
easily monitor
status of the
whole services | M onitori
ng | Compute resources in operation and wait status of queues are easily recognized. | | | | Compute
resources in
operation
and wait
status of
queues are
easily
recognized.
(necessary) | System-wide status (SURAgrid as a whole) is viewable through the SURAgrid portal - basic at this time but advanced monitoring tools exist/are emerging. | | Function to recognize configuration, usage status and failure of storage infrastructure is provided. | Compute resources in operation and wait status of queues are easily recognized. | | Control | Acc
oun
ting | 4.3.2-a | 2,3 | Usage history
of consumers
is viewable by
suppliers | | Accounting information on usage per job can be retrieved by suppliers. (necessary) Statistical information on jobs executed is available to suppliers. (preferable) Usage of service by consumers are recognized by suppliers. (necessary) | | | Accounting information on usage per job can be retrieved by suppliers. (necessary) Statistical information on jobs executed is available to suppliers. (preferable) Usage of service by consumers are recognized by suppliers. (necessary) | Accounting information on usage per job can be retrieved by suppliers. (necessary) Statistical information on jobs executed is available to suppliers. (preferable) Usage of service by consumers are recognized by suppliers. (necessary) | Common record format has been defined based on Job Usage Record standard currently progressing through the OGF User Record Working Group http://forge.ggf.org/sf/projects/ur-wg). Data gathering and formatting must be implementable using a wide variety of local schedulersis and is under investigation. | Accounting information for task operations by consumers can be retrieved by suppliers. (necessary) Statistical information for tasks performed is available to suppliers. (necessary) Usage volume of services by consumers is recognized by suppliers. (necessary) | Information required for accounting such as usage status of consumers is collected without conflicting security. *Frequency of access, usage rate (volume) *Allocation status of storage domain to consumers | Accounting information on usage per request can be retrieved by suppliers. (necessary) Statistical information on requests executed is available to suppliers. (preferable) Usage of service by consumers is recognized by suppliers. (necessary) | | | Sec
urit
y | 4 .3.3–a | 3,4 | Suppliers and
services can
be mutually
authenticated | Authenti
cation
technolo
gy | Uniform ID management (authentication , authorization, attribute management) in multiple computer systems is performed.(nec essary) | Military
Security | | Uniform ID management (authenticati on, authorization, attribute management) in multiple computer systems is performed.(n ecessary) | Uniform ID management (authenticati on, authorization , attribute management) over multiple sites is performed. (necessary) | (uses Globus Grid | Uniform ID management (authenticati on, authorization , attribute management) is performed. (preferable) | Uniform ID management (authentication, authorization, attribute management) is performed. (preferable) | Uniform ID management (authenticati on, authorization , attribute management) over multiple database systems is performed. (necessary) | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Financial
Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |-------------|------------------|-----------------|-----------|---|--|--|--|-------------------------------|--|--|---|---|---|--| | | | 4.3.3−b | 2,3 | Confidentiality,
completeness
and availability
of services
can be
guaranteed | Redund
ancy
Autono
mous
control | A job manager is made high fault—tolerance by duplication. Job execution is operated with the remaining resources even when a part of computing node is unavailable due to some failure. | | | It can continue job executions using alternate PCs and workstations in the case where PCs and workstations that handle job executions stop operating due to some failure. (preferable) | A job manager is made high fault— tolerance by duplication. (optional) It can continue job executions using alternate PCs and workstations in the case where PCs and workstations that handle job executions stop operating due to some failure. (preferable)(Optional) | Fault handling, error recovery & reporting; based on local resource supplier implementations; applications can implement mechanisms for availability and completeness across suppliers. | Businesses are not stopped due to some failures.(nece ssary) It can continue businesses of consumers using alternate services in the case where services stop operating due to some failure. (necessary) | There is a mechanism that a partial failure of storage infrastructure does not affect the entire infrastructure. It possesses a complex system and prompt recovery from system failure is possible. Rollback to the transaction status of a certain period is possible using backups. | N/A | | Con
trol | Sec
urit
y | 4.3.3−c | 2,3 | Confidentiality, completeness and availability of operations related to controls implemented by suppliers to services can guaranteed | | | | | | | | | | | | | | 4.3.3 –d | | Confidentiality, completeness and availability of contents generated by operations related to controls implemented by suppliers to services can be guaranteed | | | | | | | | | | | | | | 4.3.3−e | 2,3 | Logs for
controls
implemented
by suppliers to
services can
be recorded | | | | | | | | | | | | | | 4.3.3-f | 2,3 | Confidentiality, completeness and availability of operation logs related to controls implemented by suppliers to services can be guaranteed | | | | | | | | | | | | | | Item
No. | Lay
er | Requirement | Technol
ogy to
satisfy
require
ments | 1. Enterprise
Technical
Computing
Grid
(Computing
Grid) | 1.1 Fleet
Numerica
I by
Platform
Computin
g | Financial
Service
by HP | 2. Enterprise
Technical
Computing
Grid (PC
grid) | 3. Academic
Cooperative
Grid
(Computing
Grid) | 3.1 SURAgrid
(regional
cooperative grid) | 4. Business
Computing
Grid
(Provision of
server
resources to
business
systems) | 5. Storage
Infrastructure
Service (Storage
Grid) | 6. Enterprise
Data Grid
(Database
Federation) | |-----|--------------------------------|-----------------|-----------|--|--|--|---|-------------------------------|--|--
--|---|---|---| | Col | | 4.3.3 –g | 2,3 | Suppliers can
configure
security policy
of services | Policy
control | | Military
Security | | | | Local policy and technology components factor first in determination of security policy. Regional grid policy and technonolgy components have secondary influence on implementation. | | Suppliers can configure security policies including authentication, authorization, signature, encryption, logging and backups of storage infrastructure in accordance with SLA. | Suppliers
can
configure
data access
privileges
and others. | | | | 4.4-a | | Ways to
establish
mutual trust
relations are
specified | PMA(Po
licy
Manage
ment
Authorit
y) | N/A | | | N/A | User
certificate
issued by
Certificate
Authority
which has
set
Operational
Policy is
used.
(necessary) | SURAgrid BridgeCA approach provides mechanism for cross-trust relations; higher level of trust being implemented to be consistent with major initaitives in globally-scalable trust for HE (e.g., HEPKI, www.educause.ed u/Higher+Educati on+PKI/931; IGTF, www.igtf.net) | N/A | N/A | N/A | | be | operat
ion
ween
stems | 4.4b | 2,3 | Each other's
services are
cooperable | Resourc
e
reservat
ion | N/A | Expansio
n of
solution
across
other
geographi
cal
locations
outside
of the
Navy
requirem
ents | | N/A | Resource
reservation
is possible.
(preferable) | SURAgrid is being designed and developed to provide grid infrastructure (currently Globus-based) that enables common services to access and use heterogeneous resources across organizational and aministrative domains. Applkication-level cooperation/coor dination of resources at separate sites is desirable but not implemented/assi sted through centralized tools or services. Metascheduling is likely to be a primary means to implement this. Performance limitations due to WAN connections will also be a significant factor in which applications can benefit. | N/A | N/A | N/A |