
GFD-E.160 Steven Lynden, AIST
DAIS Working Group Mario Antonioletti (Corresponding Author), EPCC
 Mike Jackson, EPCC
 Sunil Ahn, KISTI
 November 30, 2009

dais-wg@ogf.org

WS-DAI and WS-DAIR Implementations - Experimental Document

Status of This Document

This document presents the results of the interoperability testing process of two independent
implementations of the WS-DAI (GFD.74) and WS-DAIR (GFD.76) specifications. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2009). All Rights Reserved.

Abstract

The Data Access and Integration Services (DAIS) Working Group have defined three proposed
recommendations within the Open Grid Forum (OGF). The OGF process and requirements document
[GFD.152] states that two independent interoperable implementations are required for a proposed
recommendation to become a full OGF recommendation. This OGF experimental document reports on
interoperability testing of two implementations of WS-DAIR (GFD.76) – one from the OGSA-DAI1 group at
The University of Edinburgh and the other based on AMGA2 from KISTI. In addition, as the WS-DAIR
proposed recommendation is an extension to WS-DAI (GFD.74), the testing process has encompassed
both the WS-DAIR and WS-DAI proposed recommendations. The tests documented in this OGF
experimental document establish that it is indeed possible to obtain client-based interoperability for these
two implementations. However, as a result of this interoperation process a number of changes are
recommended for the WS-DAI and WS-DAIR documents before they gain full recommendation status.

It is important to note that this document establishes a set of interoperability requirements between two or
more implementations of the WS-DAI specifications, taking into account the criteria established in GFD.77
[DAIS-Interop]. This document is not intended to establish a validation process to test the compliance of
any particular implementation to any of the (proposed) DAIS recommendations.

1 http://www.ogsadai.org.uk.
2 http://amga.web.cern.ch.

GFD-E.160 November 30, 2009

 2

Contents

Abstract ..1	

1	
 Introduction..3	

2	
 Process and limitations ...3	

2.1	
 Overview ..3	

2.2	
 WS-DAI untested features ...4	

2.3	
 WS-DAIR untested features...5	

2.4	
 Features shared by multiple operations ...5	

2.5	
 Languages, schema and dataset formats ..5	

3	
 Implementations ..5	

4	
 Testing Scenario ...6	

4.1	
 Database Schema..6	

4.2	
 Stored Procedure and User Defined Function ...6	

4.3	
 Data resource...7	

4.4	
 ResultSet format ..7	

5	
 Test suite...7	

5.1	
 Implementations supporting CoreResourceList ...7	

5.2	
 Mandatory tests..8	

5.3	
 Optional ServiceBusyFault test ..11	

5.4	
 Optional GenericQuery test..11	

5.5	
 Tests for implementations supporting stored procedures and functions......................................11	

5.6	
 Tests for implementations supporting modifications ..12	

5.7	
 Tests for implementations supporting SQLCommunicationsArea ...13	

6	
 Results ..13	

6.1	
 OGSA-DAI implementation of WS-DAIR..13	

6.2	
 AMGA implementation of WS-DAIR...22	

6.3	
 Summary..25	

7	
 Specification errata and clarifications..26	

7.1	
 Changes to the WS-DAI Core document ...26	

7.2	
 Changes to the WS-DAIR document ...29	

8	
 Conclusion...34	

9	
 Security Considerations ..34	

10	
 Contributors ...34	

11	
 Acknowledgements..34	

12	
 Intellectual Property Statement ...35	

13	
 Disclaimer ..35	

14	
 Full Copyright Notice ...35	

15	
 References ..35	

Appendix 1	
 SQL queries ..37	

Appendix 2	
 soapUI Test Suite..38	

GFD-E.160 November 30, 2009

 3

1 Introduction
Three proposed recommendations [WS-DAI, WS-DAIR, WS-DAIX] have been defined by the OGF
Database Access and Integration Services (DAIS) Working Group. This OGF experimental document
reports on the interoperability testing results arising from two implementations of WS-DAIR (GFD.76),
which also implement WS-DAI (GFD.74). Note that by interoperability here we mean interoperability of the
clients accessing the DAIS defined services, i.e. not inter-service interoperability. To be more specific, the
actual SOAP messages sent by a client, in this case a third party application, must produce the same
behaviour and results for each of the DAIS-compliant services in order for those services to be defined as
interoperable.

The implementations that participated in this exercise were:

• OGSA-DAI WS-DAIR implementation.
• AMGA WS-DAIR implementation.

The testing approach follows that defined in [DAIS-Interop] (GFD.77) with the additional two constraints:

• PortTypes MUST be bound to SOAP 1.1.
• The binding MUST use the “document/literal” style.

These constraints were first stipulated by the ByteIO working group for their interoperability tests as
implementations using different versions of SOAP, or different bindings, are not interoperable. The
rationale for taking this approach, as well as the precedent set by ByteIO, included:

• WSRF recommend this type of binding in their application notes3.
• The document/literal style offers a certain degree of decoupling of the operations from its

associated messages (the elements have to be there but these do not have to comply with a
specific XML Schema)4.

This document reports on the application of the process established in [DAIS-Interop] to validate the WS-
DAI and WS-DAIR specifications. The WS-DAI specification is validated as part of this process as WS-
DAIR extends this core specification.

2 Process and limitations
2.1 Overview
The DAIS-WG specifications define behaviours that may vary as a reflection of the different properties of
the underlying data resources to which the services provide access (e.g. support for different query
languages, support for concurrent access, etc.). As discussed in [DAIS-Interop], rather than write tests for
each specific database management system, the aim of the testing process is to validate the
specifications themselves and show that interoperability is achieved regardless of the database
management system being used. It is not intended to test the compliance of any particular implementation
to the WS-DAI or the WS-DAIR specifications. As such, the testing of every feature and of every
operation is not mandated as this process is meant to just test interoperation of two implementations,
rather than an implementation’s conformance to the specification, with a finite number of test cases.

[DAIS-Interop] states specifically that “the testing process aspires to test every mandatory feature in
multiple implementations and every optional feature in at least one implementation”. A list of the
mandatory operations and properties as defined by WS-DAI and WS-DAIR was presented in [DAIS-

3 See the (non normative) "Application notes" document: http://docs.oasis-open.org/wsrf/wsrf-
application_notes-1.2-cd-02.pdf which recommends document/literal (section 8.1). Thanks to Bernd
Schuller for pointing this out.
4 Thanks to Miguel Esteban Gutierrez for pointing this out.

GFD-E.160 November 30, 2009

 4

Interop]. However, this document did not consider specific features of relational database management
systems such as: support for query languages, user defined functions and stored procedures, which need
to be taken into account when designing a test suite. The various features of WS-DAI and WS-DAIR that
are not tested or depend on specific features of the relational database management system used are
listed in the remainder of this section, with justification given where specific features cannot be tested.

2.2 WS-DAI untested features
2.2.1 Properties
The following optional parameter is not tested:

• PreferredTargetService of factory operations. This parameter provides a hint that can be
ignored by the service, therefore testing it is impractical because there is no behaviour defined
that is dependent on the value of the parameter.

The following fault is not tested:

• DataResourceUnavailableFault is not tested because its purpose is to indicate the
unavailability of a data resource due to unanticipated reasons. The circumstances under which
this fault will be generated are implementation specific.

The following properties:

• Implementations may or may not support concurrent access; hence the ConcurrentAccess
property value is not tested. An optional test is included for implementations that have a specific
limit on the number of concurrent requests that can be handled.

The following properties, which may appear in a ConfigurationDocument specified as a parameter
with factory operations:

• Readable and Writeable properties – these are implementation-specific or related to the
underlying data resource a service is exposing.

• TransactionInitiation, TransactionIsolation, ChildSensitiveToParent and
ParentSensitiveToChild all define behaviours that may not be supported given the
database management system or the implementation that is used and are therefore considered
beyond the scope of the testing process.

The CoreResourceList portType is optional and is tested only by implementations that support it.

2.2.2 Testing ServiceBusyFault (optional)
This may be tested by implementations for which there is a reliable trigger condition that results in the
generation of a ServiceBusyFault. It may be difficult to trigger a ServiceBusyFault in some
implementations as its generation may be dependent on a number of variables including the time taken
for requests to reach the service, the time taken to process requests, and the factors that limit the number
of concurrent requests that can be processed.

2.2.3 Testing CoreDataAccess::GenericQuery (optional)
GenericQuery is an operation defined in the WS-DAI core specification that supports a general means
of passing query documents to a data resource without mandating the use of a particular language. In this
document, testing the GenericQuery operation assumes that this operation is implemented with
support for SQL queries. As this is not a requirement of the specifications, which allows any query
language to be implemented, the test is optional or may possibly be modified for implementations that
support a different implementation of GenericQuery.

GFD-E.160 November 30, 2009

 5

2.3 WS-DAIR untested features
According to the specifications, where factory operations take a configuration document as an OPTIONAL
parameter the values specified in the configuration document are hints that may be complied with but can
be ignored by the implementation. Given that the hints may be ignored, there is no correct behaviour with
which different implementations must comply, and therefore tests involving the specification of different
configuration document values are not included.

2.3.1 Features tested by implementations supporting modifications
It is possible that some implementations do not support modifications to the data contained in the
database, i.e. SQL insert, update and delete statements. If modifications are not supported, the
SQLResponse::GetSQLUpdateCount operation and SQLUpdateCount property cannot be tested.

2.3.2 Features tested by implementations supporting UDFs and stored procedures
If an implementation does not support user defined functions (UDFs), the
SQLResponse::GetSQLReturnValue operation and SQLReturnValue property cannot be tested.
If an implementation does not support stored procedures the
SQLResponse::GetSQLOutputParameter operation and SQLOutputParameter property cannot
be tested.
2.3.3 WS-DAIR features tested only by implementations supporting SQL Communications Area
Some implementations may not return errors using SQL Communications Areas, in which case the
SQLResponse::GetSQLCommunicationsArea operation and SQLCommunicationsArea property
cannot be tested.

2.4 Features shared by multiple operations
Where faults or parameters are shared by operations, the assumption is made that it is only necessary to
test such features once, for example, for every WS-DAI operation, an InvalidResourceNameFault
should be produced if an unknown resource name is specified using the DataResourceAbstractName
parameter. This fault is assumed to have been tested if it is correctly produced by one test case applied to
a single operation; it is not considered necessary to replicate this test for every operation.

2.5 Languages, schema and dataset formats
Languages, dataset and schema formats are implementation-specific and the tests do not define which
formats are used, although it is suggested by the WS-DAIR specification that WebRowSet is used as the
dataset format for SQL query results. Language and dataset formats may vary however, and where these
features are relevant, the tests must be customised to the specific implementation being tested in order to
validate that the datasets/schemas returned by the implementation are correct. Appendix 1 suggests the
SQL queries that might be used or modified depending on the language used.

3 Implementations
This section briefly outlines the implementations that participated in this exercise.

OGSA-DAI WS-DAIR implementation5:

• Uses Apache Axis 1.4 and Java 1.4.
• Can potentially use any JDBC-enabled relational database as the underlying database

management system, though it has only been tested with MySQL.
• Supports stored procedures if the underlying database management system does.
• Supported datasets: WebRowSet, comma-separated values.

5 A version of this is available from https://sourceforge.net/projects/ogsa-dai/files. The 1.0 release will be
updated to comply with the changes suggested in this document, see Section 6.1.1, once this document
has gone through the OGF process.

GFD-E.160 November 30, 2009

 6

• Security features: none.

AMGA WS-DAIR implementation6:
• Uses gSoap & C++.
• Supports the following underlying database management systems: PostgreSQL, MySQL, SQLite,

and Oracle.
• Supported languages: SQL-92 entry level “direct data statement” and the AMGA metadata

language.
o Does not support stored procedures.

• Supported dataset: WebRowSet.
• Security Features: SSL, GSI, VOMS, permission, and ACL.

4 Testing Scenario
The test scenario is based on a database of contact details organized into a relational table. The scenario
is initialized by constructing a relational database containing a set of entries.

4.1 Database Schema
A single table is created with the following schema:

CREATE TABLE IF NOT EXISTS littleblackbook
(

id INTEGER,
name VARCHAR(64),
address VARCHAR(128),
phone VARCHAR(20)

)

This table is populated with the following 10 rows:

INSERT INTO littleblackbook VALUES (1,'Ally Antonioletti','101 Antonioletti Road, San
Jose','087192027');
INSERT INTO littleblackbook VALUES (2,'Amy Atkinson','70 Atkinson Crescent,
Southampton','0105931111');
INSERT INTO littleblackbook VALUES (3,'Bartosz Chue Hong','30 Chue Hong Gardens,
Winchester','04476816');
INSERT INTO littleblackbook VALUES (4,'Craig Dobrzelecki','72 Dobrzelecki Place,
Edinburgh','0311043554');
INSERT INTO littleblackbook VALUES (5,'David Hume','75 Hume Lane, San Jose','02628860');
INSERT INTO littleblackbook VALUES (6,'Elias Illingworth','46 Illingworth Avenue,
Southampton','0423436125');
INSERT INTO littleblackbook VALUES (7,'Kostas Jackson','52 Jackson Drive,
Winchester','01071062664');
INSERT INTO littleblackbook VALUES (8,'Malcolm Krause','72 Krause Street,
Edinburgh','0121741579');
INSERT INTO littleblackbook VALUES (9,'Mario Karasavvas','13 Karasavvas Road, San
Jose','07191274');
INSERT INTO littleblackbook VALUES (10,'Mike Theocharopoulos','51 Theocharopoulos Crescent,
Southampton','0291145557');

4.2 Stored Procedure and User Defined Function
If testing an implementation that supports stored procedures and user defined functions, the following
should be defined (the syntax here is valid for MySQL, you may have to modify this for other DBMSs):

DELIMITER //
CREATE PROCEDURE proc_in_out(IN param1 INT, OUT param2
VARCHAR(30),OUT param3 INT)
BEGIN
declare loc VARCHAR(30);

6 http://amga.web.cern.ch/amga/downloads/glite-amga-soapserver-2.0.0-1.SL4.i386.rpm.

GFD-E.160 November 30, 2009

 7

select name from littleblackbook where id=param1 LIMIT 1 into param2;
select * from littleblackbook where id=param1+1;
select name from littleblackbook where id=param1+1 LIMIT 1 into loc;
update littleblackbook set name='nothing' where name=loc;
select count(id) from littleblackbook where name='nothing' into param3;
update littleblackbook set name=loc where name='nothing';
END;//
DELIMITER ;

DELIMITER //
CREATE FUNCTION func_in_out(param1 INT) RETURNS VARCHAR(30)
BEGIN
declare loc VARCHAR(30);
declare param2 VARCHAR(30);
select name from littleblackbook where id=param1 LIMIT 1 into param2;
select name from littleblackbook where id=param1+1 LIMIT 1 into loc;
update littleblackbook set name='nothing' where name=loc;
update littleblackbook set name=loc where name='nothing';
return(param2);
END;//
DELIMITER

4.3 Data resource
The database described above should be exposed using an externally managed data resource with the
abstract name dair:testresource. However, this name may be changed as long as it is a valid URI
and the new name is substituted for the dair:testresource wherever is appears in the tests.

4.4 ResultSet format
Although the WS-DAIR specification does not mandate the use of the JDBC WebRowSet [JSR114], it
does implicitly suggest that this format should be supported by implementations. The tests are written for
implementations supporting the WebRowSet format, identified by the dataset format URI
‘http://java.sun.com/xml/ns/jdbc’. In the event that an implementation that does not support
WebRowSet is tested, the supported dataset format and dataset format URI values should be used in
place of those currently defined in the tests.

5 Test suite
The test cases that comprise the WS-DAIR test suite are now listed. Tests should be executed in
sequence using a tool such as soapUI (http://www.soapui.org) or a specially-written web services client.
Regardless of how the tests are implemented or executed it should be demonstrable that the test suite is
submitting requests that are valid with respect to the WS-DAI- and WS-DAIR-defined WSDL and XML
Schema as well as checking that the responses are likewise valid with respect to the WSDL and XML
Schema.

Section 6 presents the results of the execution of this test suite using soapUI, which explicitly uses SOAP
requests to test for compliance of implementations with the specifications. Refer to Appendix 2 for more
details about the implementation of the tests using soapUI.

5.1 Implementations supporting CoreResourceList
The following tests apply only to implementations supporting the optional CoreResourceList port type.

Test Operation(s) tested Description

1

CoreResourceList::
GetResourceList

Retrieves the list of data resources from the service.
The test is passed if this list contains the resource
with the abstract name dair:testresource. The
resource may be available via a number of

GFD-E.160 November 30, 2009

 8

portTypes, however the arrangement of these
portTypes can vary based on the implementation
and the test checks only that this resource is
returned.

2

CoreResourceList::
Resolve

Retrieves the list of data resource addresses for the
abstract name dair:testresource. Passes if the
CoreResourceList endpoint used to invoke the
Resolve operation is contained in the list of
addresses.

5.2 Mandatory tests
The following test cases test mandatory features of the specifications and apply to all WS-DAIR
implementations.

Test Operation(s) tested Description

3

CoreDataAccess::
GetDataResourcePropertyDocument

Retrieves the data resource property document of
the dair:testresource resource. The test is
passed if the property document validates against
its schema and the DataResourceManagement
property is set to ExternallyManaged. Other
properties cannot be tested as their values depend
on the specifics of the underlying data resource
exposed by the service.

4

CoreDataAccess::
GetDataResourcePropertyDocument
(InvalidResourceNameFault)

Attempts to retrieve the PropertyDocument
for an invalid resource, e.g. with resource
name dair:testresource. The test passes
if an InvalidResourceNameFault
message is received.

5

CoreDataAccess::Destroy
(NotAuthorized Fault)

Attempts to perform the Destroy operation
on an externally managed
dair:testresource resource. The test is
passed if a NotAuthorizedFault message
is received.

6

SQLAccess::
GetSQLPropertyDocument

Retrieves the SQL property document of
the dair:testresource resource. The
test fails if the document does not validate
against its schema. The test needs to
check the following properties are correct
given the implementation specific features
of the database management system:

• LanguageMap,
• DatasetMap and
• SchemaDescription (if

supported).

7

SQLAccess::SQLExecute

Execute a query to select 5 rows from the
from the dair:testresource resource.
See query 1 in Appendix 1. The
DataSetFormatURI parameter should
be specified as
‘http://java.sun.com/xml/ns/jdbc’. The
resulting DatasetData element of the

GFD-E.160 November 30, 2009

 9

response message is checked for its
conformance to the WebRowSet schema
and that it correctly returns the 5 rows
selected by query 1.

8 SQLAccess::SQLExecute
(test InvalidDatasetFormatURI fault)

Test 7 is repeated with one change, the
DatasetFormatURI is specified as
dair:notsupporteddataset. The test
passes if an
InvalidDatasetFormatURI fault is
generated.

9 SQLAccess::SQLExecute
(test InvalidExpression fault)

Test 7 is repeated with one change: an
invalid query expression is specified. What
constitutes an invalid expression depends
on the implementation. The test passes if
an InvalidExpressionFault is
generated.

10

SQLAccessFactory::SQLExecuteFactory

Uses the dair:testresource resource
to execute a query to select 5 rows (query
1), the resulting resource created by the
factory operation being made available
through the SQLResponse portType. The
test passes if no fault is generated and a
data resource address is returned. The
created resource is used in subsequent
tests.

11

SQLResponse::
GetSQLResponsePropertyDocument

Retrieve the property document from the
resource created in test number 10. The
property document is validated and it is
checked that there is a single response
item and the following property values
exist: NumberOfSQLRowsets=1,
NumberOfSQLUpdateCounts=0,
NumberOfSQLReturnValues=0,
NumberOfSQLOutputParameters=0,
NumberOfSQLCommunicationsAreas=
0.

12

SQLResponse::GetSQLResponseItem

Retrieve the single response item from the
data resource created in test 10,
specifying the parameters position=0,
count=1. The DatasetData and
DatasetFormatURI elements (which are
implementation dependent) are checked to
ensure that the correct query result is
returned in the correct format and the
DatasetFormatURI is correct.

The test fails if the SQLDataset item
contains any of the following elements:
SQLUpdateCount,
SQLOutputParameter,
SQLReturnValue,
SQLCommunicationsArea.

13

SQLResponse::GetSQLResponseItem
(InvalidPositionFault)

Retrieve the single (Rowset) response
item from the resource created in test

GFD-E.160 November 30, 2009

 10

 number 10, specifying the parameters:
position=1, count=1. The test
passes if an Invalid PositionFault is
returned.

14 SQLResponse::GetSQLResponseItem
(InvalidCountFault)

Retrieve the single (Rowset) response
item from the resource created in test
number 10, specifying the parameters:
position=0, count=2. The test
passes if an InvalidCountFault is
returned.

15

SQLResponse::GetSQLRowSet

Retrieve the Rowset from the data
resource created in test 10, specifying the
parameters: position=0, count=1.
The DatasetData, and
DatasetFormatURI elements are
checked to ensure that the correct query
result is returned in the correct format.

16

SQLResponseFactory::SQLRowsetFactory

Use the resource created by test 10 to
create a data resource accessible by the
SQLRowset portType. The parameters:
position=0 and count=1 should be
used. The test passes if no fault is
generated and a data resource address is
returned. The created resource is used in
subsequent tests.

17

SQLRowset::GetSQLRowsetPropertyDocument

The RowsetPropertyDocument is
retrieved from the resource created in test
number 16 and validated. The test fails if
the value of the property NoOfRows is not
equal to 5. The following elements of the
RowSchema element are checked:
Column-count = 4
Column 1: column-name = id
Column 2: column-name = name
Column 3: column-name = address
Column 4: column-name = phone

18

SQLRowset::GetTuples

Uses the resource created in test number
16 to execute SQLRowset::GetTuples
specifying the parameters: position=1
and count=1. The DataFormatURI
should be specified as
‘http://java.sun.com/xml/ns/jdbc
’. The test passes if the DatasetData
element returned in the response
message contains a valid WebRowSet
containing the second row in the selected
by query 1.

19 SQLRowset::GetTuples
(test the AccessMode property)

Implementations will either support
Random or Forward access modes, as
indicated by the AccessMode property of
the SQLRowsetPropertyDocument
(which was retrieved by test 17). This test
uses the resource created in test 16 to
execute GetTuples with the parameters:

GFD-E.160 November 30, 2009

 11

position=0, count=1. If the
AccessMode property is set to ‘random’,
the test passes if a valid WebRowSet is
returned containing the first row selected
by query 1. If the AccessMode property is
set to ‘forward’, the test is passed if an
InvalidPositionFault is generated.

20

CoreDataAccess::Destroy
(also tests InvalidResourceNameFault)

Performs the Destroy operation on the
resource created in test 16. The test
passes if no fault is received when
executing the Destroy operation and a
subsequent attempt to retry the operation
described in test 17 fails with an
InvalidResourceName fault.

5.3 Optional ServiceBusyFault test
Test Operation(s) tested Description

21

SQLAccess::SQLExecute
(tests ServiceBusyFault)

Uses dair:testresource to execute multiple
instances of test number 7 concurrently to
trigger the ServiceBusyFault. The number of
instances that must be simultaneously executed
is an implementation-specific parameter of this
test.

5.4 Optional GenericQuery test
Te
st

Operation(s) tested Description

22

CoreDataAccess::GenericQuery

Execute a query to select 5 rows on the from the
dair:testresource resource using the
GenericQuery operation. See query 1 in Appendix 1.
The DataSetFormatURI parameter should be
specified as
‘http://java.sun.com/xml/ns/jdbc’. The
resulting DatasetData element of the response
message is checked for its conformance to the
WebRowSet schema and that it correctly returns the 5
rows selected by query 1.

23 CoreDataAccess::GenericQuery
(tests InvalidLanguageFault)

GenericQuery is executed on dair:testresource
specifying a language URI not supported by the
service. The URI attribute of the
GenericExpression parameter is specified as
‘dair:notsupportedlanguage’ in the request and
the test passes if an InvalidLanguageFault is
generated.

5.5 Tests for implementations supporting stored procedures and functions
Test Operation(s) tested Description
24 SQLAccess::SQLExecute Uses the dair:testresource resource to

execute the user defined function (see query
3 in Appendix 1). One in parameter is
specified with the initial value ‘1’. The test
passes if the correct return value is retrieved
in the SQLOutputParameter element of the
response.

GFD-E.160 November 30, 2009

 12

25 SQLAccess::SQLExecute
(tests InvalidSQLExpressionParameters
fault)

Uses the dair:testresource resource to
execute the user defined function (see query
3 in Appendix 1). Two in parameters are
specified with arbitrary values. The test
passes if an
InvalidSQLExpressionParametersFaul
t is generated, as the specified number of
parameters (2) is not equal to the number of
parameters supported by the function.

26

SQLAccessFactory::SQLExecuteFactory
(test output parameter)

Uses the dair:testresource resource to
execute the stored procedure proc_in_out
(see query 2 in Appendix 1). The first (in)
parameter should have the value ‘1’, the next
two (out) parameters can be initialised to
arbitrary values. A resource is created,
accessible through the SQLResponse
portType. The test passes if no fault is
generated and a data resource address is
returned.

27

SQLResponse::
GetSQLOutputParameter

Retrieve an output parameter from the
resource created in test 26. The following
parameters should be used: position=0,
count=1. The test passes if the correct
output parameter is retrieved (see query 2 in
Appendix 1).

28

SQLAccessFactory::SQLExecuteFactory
(test return value)

Uses the dair:testresource resource to
execute the function func_in_out (see
query 3 in Appendix 1) creating a resource
accessible through the SQLResponse
portType. The test passes if no fault is
generated and a data resource address is
returned.

29

SQLResponse::
GetSQLReturnValue

Retrieve a return value from the resource
created in test 28. The test passes if the
correct return value (as specified in Appendix
1 for query 3) is retrieved.

5.6 Tests for implementations supporting modifications
 Test Operation(s) tested Description

30 SQLAccess:SQLExecute Uses the dair:testresource resource
to execute an SQL INSERT statement to
add a row to the database. See query 4 in
Appendix 1. The test passes if the
response message contains an
SQLUpdateCount element containing the
value 1.

31

SQLAccessFactory::SQLExecuteFactory

Uses the dair:testresource resource
to execute an SQL INSERT statement to
add a row to the database and make the
response available through the
SQLResponse portType. See query 5 in
Appendix 1. The test passes if no fault is
generated and a data resource address is
returned.

 Retrieve the update count from the

GFD-E.160 November 30, 2009

 13

32

SQLResponse::
GetSQLUpdateCount

resource created by test 31. The following
parameters should be used
position=0, count=1. The test
passes if the update count value is equal
to 1.

5.7 Tests for implementations supporting SQLCommunicationsArea
Test Operation(s) tested Description

33

SQLAccessFactory::SQLExecuteFactory
(test SQLCommunicationsArea)

Uses the dair:testresource resource
to execute the factory operation,
specifying an erroneous SQL statement
(in this case the specified table should not
exist) resulting in error messages
contained within the
SQLCommunicationsArea. See query
6. The test passes if no fault is generated
and a data resource address is returned.

34

SQLResponse::
GetSQLCommunicationsArea

Retrieve the SQLCommunicationsArea
detail in the response item of the resource
created by test 33. The following
parameters should be used:
position=0, count=1. The content is
an implementation specific error message
(table does not exist) that should be
checked to be correct given the database
management system used.

6 Results
This section presents the results of applying the test suite to two independent implementations of WS-
DAIR:

• OGSA-DAI implementation of WS-DAIR
• AMGA implementation of WS-DAIR

These were implemented and executed using the soapUI web services development and test
environment. Information about soapUI and the test suite implementation are in Appendix 2.

In some cases, issues arose during testing resulted in recommended alterations to the WS-DAI and WS-
DAIR specifications. A list of these issues and their corresponding resolutions can be found in section 7.

6.1 OGSA-DAI implementation of WS-DAIR
OGSA-DAI WS-DAIR 1.0, released in December 2008, was used (https://sourceforge.net/projects/ogsa-
dai/files/). Changes were made to the WSDL documents that bind the WS-DAI and WS-DAIR WSDL to
SOAP/HTTP to specify a document/literal encoding rather than the rpc/literal one used in the 1.0 release.
Additional changes made to the release to pass certain tests and reflect certain agreed clarifications in
the specifications are documented below.

6.1.1 Changes made to OGSA-DAI WS-DAIR to pass certain tests
Changes were made to OGSA-DAI WS-DAIR to fix bugs highlighted by the tests.

WS-DAI/R namespaces – XPathMatch in TEST1, 2, 31 and PropertyTransfer2 after TEST10, 16, 31

XPath Matches failed if using:

GFD-E.160 November 30, 2009

 14

declare namespace wsdai="http://www.ggf.org/namespaces/2005/12/WS-DAI"
(//wsdai:DataResourceAbstractName)

with error:

XPath assertion failed for path
[declare namespace wsdai="http://www.ggf.org/namespaces/2005/12/WS-
DAI"(//wsdai:DataResourceAbstractName)] : Exception: Missing content for xpath ... in
Response.

But worked if using:

declare namespace wsdai="http://www.ggf.org/namespaces/2005/12/WS-DAI/"
(//wsdai:DataResourceAbstractName)

Note the final "/"

Schema Compliance was valid though.

soapUI property transfers likewise failed. The problem affected any test that returned a WS-EPR. An
example of a problematic fragment is:

<ns3:ReferenceParameters xmlns:ns3="http://www.w3.org/2005/08/addressing">
 <ns4:DataResourceAbstractName xmlns:ns4="http://www.ggf.org/namespaces/2005/12/WS-
DAI/">wsdai:BookDB</ns4:DataResourceAbstractName>
. . .

Note how the namespace has the final "/".

Referring to: [http://stackoverflow.com/questions/430990/what-is-the-significance-of-trailing-slashes-in-a-
namespace-uri],

"A relative URI c from http://a/b/ is http://a/b/c (a descendant) but from http://a/b it would
be http://a/c (a sibling)."

This namespace with trailing "/" is not in any of the DAIS-WG or the OGSA-DAI XML Schema or WSDL
sources. Nor is it in any WSDD or auto-generated Java class. The problem was in the server's WS-EPR
construction. In src/core-clientserver/uk/org/ogsadai/wsdai/core/CoreUtils.java the
WS-EPR is built and the DataResourceAbstractName is inserted in-code into the
ReferenceParameters bean. The constant for the namespace is in src/core-
clientserver/uk/org/ogsadai/wsdai/core/CoreConstants.java:

public static final String DAI_NS = "http://www.ggf.org/namespaces/2005/12/WS-DAI/";

with the trailing "/". This was changed to remove the trailing “/” as was the DAIR_NS constant in
src/dair-clientserver/uk/org/ogsadai/wsdai/dair/DAIRConstants.java and, since the
port mappings in config.txt use namespaces too, e.g:

wsdai.port.$SQL_RESPONSE_ID$.ResponseServiceResponseFactoryPT={http://www.ggf.org/name
spaces/2005/12/WS-DAIR/}SQLResponseFactoryPT

The trailing "/" was removed from these also.

General OGSA-DAI WS-DAIR bugs and changes

Position -1 can yield a:

GFD-E.160 November 30, 2009

 15

 <faultstring>java.lang.NumberFormatException: Invalid unsigned int-
1]</faultstring>
This is not an issue. The number -1 is not a valid unsigned integer. Only 0..N are valid.

It was decided that GetResourceList should return all port-resource combinations for a service. Thus
src/core-
server/uk/org/ogsadai/wsdai/core/executor/CoreResourceListExecutor.java was
changed to implement this.

There were incorrect WSDL/SOAP operation bindings. In
schema/wsdai/dai_service_bindings.wsdl, the WSDL operation GetResourceList was
mapped to a SOAP operation GetDataResourceList. Likewise
in schema/wsdair/coreresponse_bindings.wsdl, the WSDL operations GetSQLUpdateCount,
GetSQLReturnValue,GetSQLOutputParameter, GetSQLCommunicationsArea were mapped to
GetSQLRowsetFactory. These have all been fixed.

6.1.2 Test run summary

This is a summary of the test runs on the soapUI test suite implementation:

• https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_project_amga 0.4.xml

 It used OGSA-DAI WS-DAIR with document/literal encoding and the changed outlined in section 6.1.1.
An “O” signifies a pass, “X” a failure.

Test Results Optional /
Mandatory

Description

1 O Optional
2 O Optional
3 O Mandatory
4 O Mandatory
5 O Mandatory
6 O Mandatory
7 O Mandatory
8 O Mandatory
9 O Mandatory

10 O Mandatory
11 X Mandatory SchemaCompliance failure.
12 O Mandatory
13 O Mandatory
14 O Mandatory
15 O Mandatory
16 X Mandatory SchemaCompliance failure. A warning about Missing

operation GetSQLRowsetFactory. The operation is
invoked successfully however.

17 O Mandatory
18 O Mandatory
19 O Mandatory
20 O Mandatory
21 X Optional ServiceBusyFault is Not supported
22 X Optional GenericQuery is Not supported
23 X Optional GenericQuery is Not supported
24 O Optional

GFD-E.160 November 30, 2009

 16

25 O Optional
26 O Optional
27 X Optional XPath Match failure.
28 O Optional
29 O Optional
30 X Optional Schema Compliance failure. Invalid xsi:type qname:

'xsd:int'
31 O Optional
32 O Optional
33 O Optional
34 X Optional XPath Match failure.

Comments on the failures and proposed solutions are as follows.

TEST11 – Schema Compliance

If the Schema Compliance assertion is enabled the following failure is reported.

line 33: Invalid xsi:type qname: 'ns19:SQLRowsetConfigurationDocumentType' in element
DefaultConfigurationDocument

This is the problematic excerpt from the SOAP response from OGSA-DAI WS-DAIR:

<ns15:ConfigurationMap xsi:type="ns15:ConfigurationMapType"
xmlns:ns15="http://www.ggf.org/namespaces/2005/12/WS-DAI">
 <ns15:MessageQName xmlns:ns16="http://www.ggf.org/namespaces/2005/12/WS-
DAIR/">ns16:SQLRowsetFactory</ns15:MessageQName>
 <ns15:PortTypeQName xmlns:ns17="http://www.ggf.org/namespaces/2005/12/WS-
DAIR/">ns17:SQLRowsetPT</ns15:PortTypeQName>
 <ns15:ConfigurationDocumentQName
xmlns:ns18="http://www.ggf.org/namespaces/2005/12/WS-
DAIR">ns18:SQLRowsetConfigurationDocumentType</ns15:ConfigurationDocumentQName>
 <DefaultConfigurationDocument xmlns="">
 <ns15:ConfigurationDocument xsi:type="ns19:SQLRowsetConfigurationDocumentType"
xmlns:ns19="http://www.ggf.org/namespaces/2005/12/WS-DAIR">
 <ns15:Readable>true</ns15:Readable>
 <ns15:Writeable>false</ns15:Writeable>
 <ns15:TransactionInitiation>NotSupported</ns15:TransactionInitiation>
 <ns15:TransactionIsolation>NotSupported</ns15:TransactionIsolation>
 <ns15:ChildSensitiveToParent>Sensitive</ns15:ChildSensitiveToParent>
 <ns15:ParentSensitiveToChild>Sensitive</ns15:ParentSensitiveToChild>
 </ns15:ConfigurationDocument>
 </DefaultConfigurationDocument>
</ns15:ConfigurationMap>

This is because OGSA-DAI WS-DAIR’s SQLResponsePropertyDocument cites the
SQLRowsetConfigurationDocumentType. The reason for this is that we need to expose the default
SQLRowset configuration document in the SQLResponse property document – since SQLResponse
can create SQLRowset resources. The XML Schema and WSDL for SQLResponse do not import
SQLRowset types. In OGSA-DAI WS-DAIR we changed it so it does (otherwise Apache Axis could not
handle such documents). These were the imports we added:

SQLAccess WSDL (wsdair_sqlaccess_porttypes.wsdl):

 <xsd:include schemaLocation="wsdair_sqlresponse_types.xsd"/>
 <xsd:include schemaLocation="wsdair_sqlrowset_types.xsd"/>

SQLResponse WSDL (wsdair_sqlresponse_porttypes.wsdl):

GFD-E.160 November 30, 2009

 17

 <xsd:include schemaLocation="./wsdair_sqlrowset_types.xsd"/>

If the WSDL and XML Schema used by soapUI to validate SOAP requests and responses are changed
use OGSA-DAI WS-DAIR’s then the problem goes away. It is assumed that AMGA does not encounter
this problem as their service does not include the problematic
SQLRowsetConfigurationDocumentType element.

A resolution for this issue (recommendation 31 of section 7.2) is for the WS-DAI WSDL to include the
additional imports above to reflect the implicit dependence of SQLResponse property documents on
SQLRowset configuration document schema (and likewise SQLAccess property documents on
SQLResponse configuration document schema).

TEST16 – GetSQLRowsetFactory

This test fails with:

Schema Compliance - FAILED
-> line1: Missing operation [GetSQLRowsetFactory] in wsdl definition

If the WSDL and XML Schema used by soapUI to validate SOAP requests and responses are changed
use OGSA-DAI WS-DAIRs then the problem does not occur. Also, the problem does not occur if a new
soapUI test case for this test is created, rather than using one pre-defined in a soapUI configuration file.
In addition:

• The SOAP request is accepted by OGSA-DAI WS-DAIR.
• A SOAP response is received from OGSA-DAI WS-DAIR.
• AMGA’s client can invoke this operation on an OGSA-DAI WS-DAIR service.

o See https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/AMGA_Client_To_OGSADAI
_Server_TEST_20090527.doc

• OGSA-DAI WS-DAIR’s client can invoke this operation on an AMGA service.
o See https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-

wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/OGSADAIClient_To_AMGA_
Server_TEST_20090602.doc

In consequence, the authors believe this is a soapUI-related issue rather than an inter-operability issue.

TEST 27 and TEST 34 – XPath Match fails

An example of a TEST27 SOAP response is:

<SQLOutputParameter xsi:type="ns1:SQLOutputParameterType"
xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-DAIR">
 <index xmlns="">2</index>
 <value xmlns="">Ally Antonioletti</value>
</SQLOutputParameter>

XPath Match fails for index and value, e.g.:

XPathContains assertion failed for path [declare namespace
wsdair="http://www.ggf.org/namespaces/2005/12/WS-DAIR"
(//wsdair:index)] : Exception:Missing content for xpath [declare namespace
wsdair="http://www.ggf.org/namespaces/2005/12/WS-DAIR"
(//wsdair:index)] in Response

Likewise, an example of a TEST34 SOAP response will contain:

GFD-E.160 November 30, 2009

 18

<SQLState xmlns="">42S02</SQLState>
<VendorCode xmlns="">1146</VendorCode>
<MessageText xmlns="">Table 'wsdairinterop.tabledoesnotexist' doesn't
exist</MessageText>

And an XPath Match will fail for SQLState, VendorCode or MessageContent.

If the WS-DAIR and WS-DAIR XML Schema are changed and elementFormDefault="qualified"
added to the Core, SQLAccess, SQLResponse and SQLRowset XML Schema (in OGSA-DAI WS-DAIR
files wsdai_core_types.xsd, wsdair_sqlaccess_types.xsd,
wsdair_sqlresponse_types.xsd, wsdair_sqlrowset_types.xsd), a new version of OGSA-DAI
WS-DAIR built and deployed using these then the tests pass. This is recommendation 13 of section 7.1.

TEST30 - xsi:type="xsd:int"

SQLAccess XML Schema (wsdair_sqlaccess_types.wsdl) defines:

<xsd:element name="SQLUpdateCount" type="xsd:int"/>

It is used in:

<xsd:complexType name="SQLDatasetType">
 <xsd:complexContent>
 <xsd:extension base="wsdai:DatasetType">
 <xsd:sequence>
 <xsd:element ref="wsdair:SQLUpdateCount" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="wsdair:SQLOutputParameter" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="wsdair:SQLReturnValue" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="wsdair:SQLCommunicationsArea" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

TEST30 which submits an SQLUpdate gets back:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <SQLExecuteResponse xmlns="http://www.ggf.org/namespaces/2005/12/WS-DAIR">
 <SQLDataset>
 <ns1:DatasetFormatURI xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-
DAI">http://java.sun.com/xml/ns/jdbc</ns1:DatasetFormatURI>
 <ns2:DatasetData xmlns:ns2="http://www.ggf.org/namespaces/2005/12/WS-
DAI"/>
 <SQLUpdateCount xsi:type="xsd:int">1</SQLUpdateCount>
 </SQLDataset>
 </SQLExecuteResponse>
 </soapenv:Body>
</soapenv:Envelope>

and the test fails at Schema Compliance which complains:

-> Invalid xsi:type qname: 'xsd:int' in element
SQLDataset@http://www.ggf.org/namespaces/2005/12/WS-DAIR

GFD-E.160 November 30, 2009

 19

If, directly in the soapUI SOAP response window, the xsi:type="xsd:int" is edited out and a request
made for it to be re-validated, validation succeeds.

If the XML Schema is changed to:

<xsd:complexType name="SQLDatasetType">
 <xsd:complexContent>
 <xsd:extension base="wsdai:DatasetType">
 <xsd:sequence>
 <xsd:element name="SQLUpdateCount" minOccurs="0" type="xsd:int"
maxOccurs="unbounded"/>
 <xsd:element ref="wsdair:SQLOutputParameter" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="wsdair:SQLReturnValue" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="wsdair:SQLCommunicationsArea" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Then the SOAP response contains

 ...
 <SQLUpdateCount xmlns="">1</SQLUpdateCount>
 ...

Enforcing elementFormDefault="qualified" resolves the empty namespace issue. However, the
xsi issue remains.

Curiously, other occurrences of xsd:int give no problem, e.g. in SQLAccess the XML Schema
(wsdair_sqlaccess_types.xsd) defines index and value:

 <xsd:complexType name="SQLOutputParameterType">
 <xsd:sequence>
 <xsd:element name="index" type="xsd:int"/>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="SQLOutputParameter" type="wsdair:SQLOutputParameterType"/>

And, then, if calling stored procedure proc_in_out via SQLExecute, the integers in the
SQLOutputParameter give no problems:

<SQLUpdateCount xsi:type="xsd:int">1</SQLUpdateCount>
<SQLOutputParameter xsi:type="ns4:SQLOutputParameterType"
xmlns:ns4="http://www.ggf.org/namespaces/2005/12/WS-DAIR">
 <index xmlns="">2</index>
 <value xmlns="">Ally Antonioletti</value>
</SQLOutputParameter>
<SQLOutputParameter xsi:type="ns5:SQLOutputParameterType"
xmlns:ns5="http://www.ggf.org/namespaces/2005/12/WS-DAIR">
 <index xmlns="">3</index>
 <value xmlns="">1</value>
</SQLOutputParameter>

But the initial SQLUpdateCount element does cause the problem to arise.

GFD-E.160 November 30, 2009

 20

Note though that index and value are defined within another type declaration rather than being a top-
level type declaration. Likewise SQLResponse WSDL (wsdair_sqlresponse_porttypes.wsdl)
defines:

<xsd:element name="GetSQLUpdateCountResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="UpdateCount"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

This gives no problems at all, e.g. when calling GetSQLUpdateCount:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <GetSQLUpdateCountResponse xmlns="http://www.ggf.org/namespaces/2005/12/WS-
DAIR">
 <UpdateCount>1</UpdateCount>
 </GetSQLUpdateCountResponse>
 </soapenv:Body>
</soapenv:Envelope>

And for SQLRowset XML Schema (wsdair_sqlrowset_types.xsd), it too has a top-level xsd:int-
typed element:

<xsd:element name="NoOfRows" type="xsd:int"/>

<xsd:complexType name="SQLRowsetPropertyDocumentType">
 <xsd:complexContent>
 <xsd:extension base="wsdai:PropertyDocumentType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" ref="wsdair:RowSchema"/>
 <xsd:element maxOccurs="1" minOccurs="1" ref="wsdair:NoOfRows"/>
 <xsd:element maxOccurs="1" minOccurs="1" ref="wsdair:AccessMode"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:element name="SQLRowsetPropertyDocument"
type="wsdair:SQLRowsetPropertyDocumentType"/>

This gives no problems at all, e.g. when calling GetSQLRowsetPropertyDocument:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <SQLRowsetPropertyDocument xmlns="http://www.ggf.org/namespaces/2005/12/WS-
DAIR">
 ...
 <NoOfRows>5</NoOfRows>
 <AccessMode>Forward</AccessMode>
 </SQLRowsetPropertyDocument>
 </soapenv:Body>
</soapenv:Envelope>

GFD-E.160 November 30, 2009

 21

The exact cause of this problem is unclear but it is a tooling issue rather than an inter-operability issue
and similar arguments apply as for is the TEST16 issue discussed previously.

Setting the following in the Apache Axis server-config.wsdd file should suppress xsi insertions:

<parameter name="sendXsiTypes" value="false"/>

But it does not. Others have e-mailed Axis about this problem over the years but to no response.

6.1.3 A second run

As stated in the investigation of the TEST11 and 16 failures, the soapUI suite validates requests against
the WSDL and XML Schema defined by AMGA - if the test suite is changed to validate requests against
the WSDL and XML Schema defined by OGSA-DAI then TEST11 and 16 pass.

Likewise, TEST27 and 34 pass if elementFormDefault="qualified" is used in the WS-DAI and
WS-DAIR XML Schema.

Applying these changes and running the soapUI test suite implementation:

• https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_project_ogsadai_namesp
ace 0.4.xml

gives the following results:

Test Results Optional /
Mandatory

Description

1 O Optional
2 O Optional
3 O Mandatory
4 O Mandatory
5 O Mandatory
6 O Mandatory
7 O Mandatory
8 O Mandatory
9 O Mandatory

10 O Mandatory
11 O Mandatory
12 O Mandatory
13 O Mandatory
14 O Mandatory
15 O Mandatory
16 O Mandatory
17 O Mandatory
18 O Mandatory
19 O Mandatory
20 O Mandatory
21 X Optional ServiceBusyFault is Not supported
22 X Optional GenericQuery is Not supported
23 X Optional GenericQuery is Not supported
24 O Optional
25 O Optional
26 O Optional

GFD-E.160 November 30, 2009

 22

27 O Optional
28 O Optional
29 O Optional
30 X Optional Schema Compliance failure. Invalid xsi:type qname:

'xsd:int'
31 O Optional
32 O Optional
33 O Optional
34 O Optional

6.2 AMGA implementation of WS-DAIR

6.2.1 A first run

This was run using AMGA version: 2.0.0pre2:

• http://amga.web.cern.ch/amga/downloads/glite-amga-soapserver-2.0.0-1_pre1.SL4.i386.rpm

The following test suite was used for this run:

• https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_project_amga 0.3.xml

The results were as follows:

Test Results Optional /
Mandatory

Description

1 O Optional
2 O Optional
3 O Mandatory
4 O Mandatory
5 O Mandatory
6 O Mandatory
7 O Mandatory
8 O Mandatory
9 O Mandatory

10 O Mandatory
11 X Mandatory Schema Compliance Issue (Namespace)

- SequenceNumber is expected instead of
wsdair: SequenceNumber

12 O Mandatory
13 O Mandatory
14 O Mandatory
15 O Mandatory
16 O Mandatory
17 O Mandatory
18 O Mandatory
19 O Mandatory
20 O Mandatory
21 X Optional ServiceBusyFault is Not supported
22 O Optional
23 O Optional
24 X Optional Stored Procedure is Not supported
25 X Optional Stored Procedure is Not supported

GFD-E.160 November 30, 2009

 23

26 X Optional Stored Procedure is Not supported
27 X Optional Stored Procedure is Not supported
28 X Optional Stored Procedure is Not supported
29 X Optional Stored Procedure is Not supported
30 O Optional
31 O Optional
32 O Optional
33 X Optional AMGA does not use Communication Area for a fault message
34 X Optional AMGA does not use Communication Area for a fault message

6.2.2 A second run

A second run used validating requests and responses against the XML Schema and WSDL used in
OGSA-DAI WS-DAIR:

https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_project_ogsadai 0.4.1.xml

The results were as follows:

Test Results Optional /
Mandatory

Description

1 O Optional
2 X Optional The CoreResourceList endpoint used to invoke the

Resolve operation is not contained in the list of addresses
3 O Mandatory
4 O Mandatory
5 O Mandatory
6 O Mandatory
7 O Mandatory
8 O Mandatory
9 O Mandatory

10 O Mandatory
11 X Mandatory Schema Compliance Issue (Namespace)

- SequenceNumber is expected instead of
wsdair: SequenceNumber

12 O Mandatory
13 O Mandatory
14 O Mandatory
15 O Mandatory
16 O Mandatory
17 O Mandatory
18 O Mandatory
19 O Mandatory
20 O Mandatory
21 X Optional ServiceBusyFault is Not supported
22 O Optional
23 O Optional
24 X Optional Stored Procedure is Not supported
25 X Optional Stored Procedure is Not supported
26 X Optional Stored Procedure is Not supported
27 X Optional Stored Procedure is Not supported
28 X Optional Stored Procedure is Not supported

GFD-E.160 November 30, 2009

 24

29 X Optional Stored Procedure is Not supported
30 O Optional
31 O Optional
32 O Optional
33 X Optional AMGA does not use Communication Area for a fault message
34 X Optional AMGA does not use Communication Area for a fault message

TEST2 : The CoreResourceList endpoint used to invoke the Resolve operation is not contained in
the list of addresses

EndPoint: http://150.183.250.215:8844/CoreResourceList

Response:

<wsdai:DataResourceAddress xsi:type="wsdai:DataResourceAddressType">
 <wsa:Address
xsi:type="wsa:AttributedURIType">http://150.183.250.215:8844/SQLAccess/wsdair_test</ws
a:Address>
 <wsa:ReferenceParameters xsi:type="wsa:ReferenceParametersType">

<wsdai:DataResourceAbstractName>http://150.183.250.215:8844/SQLAccess/wsdair_test</wsd
ai:DataResourceAbstractName>
 </wsa:ReferenceParameters>
 </wsdai:DataResourceAddress>
 </wsdai:ResolveResponse>

6.2.3 A third run

A third run used validating requests and responses against the XML Schema and WSDL used in OGSA-
DAI WS-DAIR with setting elementFormDefault="qualified".

Changes to the AMGA WS-DAIR Implementation:

• CoreResourceList::Resolve Operation returns output compliant to TEST2 pass
condition

• AMGA version: 2.0.0pre2: http://amga.web.cern.ch/amga/downloads/glite-amga-soapserver-
2.0.0-1_pre2.SL4.i386.rpm.

New Test suite: wsdair_test_0_1.xml

• All the default namespaces are qualified.
• possible to test both AMGA and OGSA-DAI WS-DAIR interface.
• URL: https://forge.gridforum.org/sf/wiki/do/viewAttachment/projects.dais-

wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_test_0_1.xml.

The results were as follows:

Test Results Optional /
Mandatory

Description

1 O Optional
2 O Optional
3 O Mandatory
4 O Mandatory
5 O Mandatory
6 O Mandatory
7 O Mandatory

GFD-E.160 November 30, 2009

 25

8 O Mandatory
9 O Mandatory

10 O Mandatory
11 O Mandatory
12 O Mandatory
13 O Mandatory
14 O Mandatory
15 O Mandatory
16 O Mandatory
17 O Mandatory
18 O Mandatory
19 O Mandatory
20 O Mandatory
21 X Optional ServiceBusyFault is Not supported
22 O Optional
23 O Optional
24 X Optional Stored Procedure is Not supported
25 X Optional Stored Procedure is Not supported
26 X Optional Stored Procedure is Not supported
27 X Optional Stored Procedure is Not supported
28 X Optional Stored Procedure is Not supported
29 X Optional Stored Procedure is Not supported
30 O Optional
31 O Optional
32 O Optional
33 X Optional AMGA does not use Communication Area for a fault message
34 X Optional AMGA does not use Communication Area for a fault message

6.3 Summary
In general, a number of tests were performed that required changes to the test suite itself and the
implementations. The reasons for these changes have been documented in the corresponding sections.
The final runs, test run 2 for OGSA-DAI and test run 3 for AMGA provide the final runs on which the final
interoperability is based. For these:

• One test could not be executed with either implementation, Test 21 (ServiceBusyFault).

The two implementations never generated the ServiceBusyFault due to the nature of their support for
concurrency. The difficulty associated with testing this feature has already been discussed in Section 2. It
should be noted that ServiceBusyFault is defined in a manner consistent with other faults, meaning
that the other tests do provide some validation of this untested feature. We do not consider the fact that
neither of these implementations supported this fault to have compromised the interoperability between
the two implementations in any way.

Each of the tests for optional features was executed by at least one implementation and all tests for
mandatory features were executed by both implementations, which is consistent with the aims of the
testing process discussed in Section 2. A number of issues were discovered which resulted in
recommended alterations to the specifications, which are listed in Section 7. Several tests failed during
initial runs of the test suite but were subsequently resolved as follows:

• Test 2 (CoreResourceList::Resolve): resolved with an implementation change to AMGA
WS-DAIR.

• Test 11 (SQLResponse::GetSQLResponsePropertyDocument): passes if the proposed
resolution to issue WS-DAIR 31 in Section 7 is carried out.

• Test 16 (SQLResponseFactory::SQLRowsetFactory): determined to be an issue related to
soapUI's schema validation.

GFD-E.160 November 30, 2009

 26

• Tests 27 (SQLResponse::GetSQLOutputParameter) and 34
(SQLReponse::GetSQLCommunicationsArea): pass if the proposed resolution to WS-DAI
issue 13 (use elementFormDefault=”qualified” throughout the specifications) is carried
out.

• Test 30 (SQLAccess::SQLExecute): A known Apache Axis tooling issue, discussed in Section
6.1.2.

As each of the above test failures have resolutions listed in Section 7 or have been identified as tooling or
test suite implementation issues, the conclusion reached from the interoperability testing process is that
two indepedent implementations of the WS-DAIR/WS-DAI specifications have been shown to be
interoperable, subject to the recommended changes listed in Section 7 being made to the specifications.

7 Specification errata and clarifications
This section summarises the errata and recommended changes to the proposed WS-DAI and WS-DAIR
specifications that have been found in the process of implementing and testing the specifications. Some
of the recognised issues recommend clarifications to the specification text; other issues may also require
changes to the WSDL files specifying the interfaces. For issues that appear here, as the result of a failed
test in Section 6, the corresponding resolutions have already been implemented in order to confirm that
they result in test cases being passed. Therefore, if the resolutions to the issues listed in this section are
made, it will reinforce the interoperability of the two independent implementations of the WS-DAIR
specification.

Many of the clarifications and outstanding issues listed for the WS-DAI core specification have
implications for the two other WS-DAI descendent specifications, WS-DAIX and WS-DAI-RDF. However,
the suggestion here is that these will be noted as trackers for the WS-DAIX proposed recommendation or
they can be taken into account by the WS-DAI-RDF specifications as these have not yet been submitted.

It is suggested is that these changes are made directly into the existing propsed WS-DAI and WS-DAIR
recommendations or, if the OGF Editor deems it, new versions of the proposed recommendations will be
produced obsoleting the previous versions of the WS-DAI and WS-DAIR documents. We are not aware of
any other implementations of these proposed recommendations that would be affected by these changes.

7.1 Changes to the WS-DAI Core document

1. Page 9 states that:
“When a data resource address is returned by a WS-DAI data service, for example, in the case of
factory messages, the EPR ReferenceParameter element MUST contain the
DataResourceAbstractName element that identifies the data resource to which the address
refers.”
At OGF-22 it was concluded that violation of WS-EPR opacity of reference parameters is
commonplace.
Resolution: the following text should be added to the penultimate paragraph of p9:
“In terms of WSRF realizations this violates the opacity of WS-resource qualified end-point
references. But, in order to accommodate the WSRF-agnostic nature of the DAIS specifications
this is a necessary transgression.”

2. Inconsistency in the specs: on page 14 it states that ServiceManaged and
ExternallyManaged are the two possible values for DataResourceManagement but on page
22 it introduces the value InternallyManaged. This is a typo as it does not appear in the
normative WSDL.
Resolution: change the InternallyManaged to ServiceManaged.

3. In the WSDL on p40, GetDataResourcePropertyDocumentRequest extends RequestType
but it should extend BaseRequestType as this introduces DatasetFormatURI as an input to

GFD-E.160 November 30, 2009

 27

CoreDataAccess::GetDataResourcePropertyDocumentRequest which is not required.
Resolution: change GetDataResourcePropertyDocumentRequest to extend from
BaseRequestType.

4. The use of the NotAuthorizedFault on operations assumes that authorization is done within
the service. Some architectures support/encourage authorization to be done before the operation
is invoked. Information on the consumer, operation and arguments are intercepted and used to
authorize a request before the service operation is even invoked. In such cases, this fault may be
redundant. At OGF-22 it was explained that in other environments or implementations it may be
down to the WS-DAI implementation to do the authorization in which case the fault is valid. Again
this should be explicitly stated.
Resolution: add the following text to the description of NotAuthorizedFault in Section 4.13:
“Note: the NotAuthorizedFault on operations assumes that authorization is done by the service. In
some cases invocation of a service operation will be authorised before it reaches the service. In
such cases this fault may be rendered redundant.”
Additionally, for every operation that lists NotAuthorizedFault as a possible fault type,
change the sentence:
"NotAuthorizedFault - the consumer is not authorized to perform this operation at this time"
to:
"NotAuthorizedFault - service-level authorization was unsuccessful, indicating that the consumer
is not authorized to perform this operation at this time".

5. Update the WS-Addressing reference in wsdai_core_types.xsd from:
 http://www.w3.org/2005/08/addressing

to:
http://www.w3.org/2006/03/addressing/ws-addr.xsd.
Resolution: update the WS-Addressing reference in wsdai_core_types.xsd to use:
http://www.w3.org/2006/03/addressing/ws-addr.xsd.

6. The specifications should state that if WSRF is being used then the properties in the property
document MUST be exposed as individual WSRF resource properties.
Resolution: add the following text to WS-DAI specification, section 6. WSRF Data Resource,
sub-section 6.1.1 DataResourceProperties, p27.
”For a WSRF-based implementation the properties defined in this section MUST be made
available as individual WSRF resource properties.”

7. In Section 5.3.1, the DatasetFormat element should be a DatasetFormatURI element. This
appears in both the example XML fragment and the main text.
Resolution: change all occurrences of DatasetFormat should be changed to
DatasetFormatURI in Section 5.3.1.

8. On p26 defines GetDataResourceList and GetDataResourceListResponse but WSDL on
Appendix 2 defines GetResourceList and GetResourceListResponse.
Resolultion: the WSDL is normative, so change GetDataResourceList and
GetDataResourceListResponse on p26 to GetResourceList and
GetResourceListResponse.

9. On p27/p28, WS-Resource 1.2 is cited twice in the list.
Resolution: remove the second bullet point that references it on p28.

10. On p42, InvalidExpressionFault message definition should use
“wsdai:InvalidLanguageFault” element instead of using
“wsdai:InvalidExpressionFault” element
Resolution: on p42 change “wsdai:InvalidExpressionFault” to
“wsdai:InvalidLanguageFault”.

11. An optional fault should be added for requests that attempt to fetch too much data, for example
an implementation may be able to tell that a direct data access request will result in more data
being returned than the service can handle. In such scenarios a fault should be generated
indicating to the client that indirect data access should be used. Provisional name for the
proposed fault is DatasetTooLargeFault.
Resolution: define DatasetTooLargeFault in WS-DAI Appendix A.1 – Core XML Schema

GFD-E.160 November 30, 2009

 28

and add the fault to the following operations in the WSDL and document text for WS-DAI and
WS-DAIR - WS-DAI Core: GenericQuery, WS-DAIR: SQLExecute, SQLExecuteFactory,
GetSQLResponseItem, GetSQLRowset, GetSQLRowsetFactory and GetTuples. This
resolution affects the core WS-DAI specification and WS-DAIR. Corresponding changes are also
recommended to operations in the WS-DAIX and WS-DAI-RDF specifications (operations listed
above are in WS-DAI and WS-DAIR, it needs to be decided where the fault is appropriate in the
WS-DAIX and WS-DAIR-RDF specifications).

12. The specifications contain examples of various messages but no examples of fault messages.
Some examples should be included as from the WSDL alone it can sometimes be difficult for
developers to verify that the actual XML messages produced by an implementation are correct.
Resolution: add examples of fault messages to WS-DAI Core, section 4.1.3 Faults, p12:

<ns1:InvalidResourceNameFault
 xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-DAI"/>
<ns1:NotAuthorizedFault
 xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-DAI"/>
<ns1:InvalidDatasetFormatFault
 xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-DAI"/>
<ns1:InvalidExpressionFault
 xmlns:ns1="http://www.ggf.org/namespaces/2005/12/WS-DAI"/>

13. There is an inconsistency in the WSDL ranging across the entire family of WS-DAI specifications

with regards to ElementFormDefault being set in some places to “qualified” and in other
places being implicitly set to “unqualified”. The consensus is that “qualified” should be
used throughout and namespaces should be explicitly set in all of the WSDL/XML Schema
defined by any WS-DAI specification.
Resolution: explicitly set the ElementFormDefault across all specs to “qualified”.

14. There is a certain degree of ambiguity and some inconsistencies regarding the
InvalidLanguageFault and InvalidExpressionFault. The former could be interpreted
as a subset of the latter and the exact conditions under which each fault is generated need to be
clarified. The passing of LanguageURIs to query operations is related to this issue; currently only
the GenericQuery operation allows for this, but it has been noted that multiple languages may
be supported by specific realisations, e.g. different versions of SQL, so passing a LanguageURI
to realisation specific query operations may be valid. However, this should be optional as many
implementations will only support one language. The consensus is as follows:

i. Specifying a LanguageURI that is not supported SHOULD result in an
InvalidLanguageFault. This is the only condition under which an
InvalidLanguageFault can be generated and any other problems with an
expression must result in an InvalidExpressionFault.

ii. When a query operation is invoked using a resource that supports only one
language, any processing of the LanguageURI element that may appear in the
message is optional. The implementation may choose to execute the expression
using its supported language even if an invalid LanguageURI is specified. This
ensures that LanguageURI and InvalidLanguageFault do not need to be
supported by implementations that support only one language.

Resolution: state in Section 5.1.7 that:
 “a LanguageURI that is not supported SHOULD result in an InvalidLanguageFault. This is the
only condition under which an InvalidLanguageFault can be generated and any other problems
with an expression must result in an InvalidExpressionFault. InvalidLanguageFault is an optional
fault; it does not need to be supported by implementations that do not provide query operations
supporting multiple languages".

15. Must configurable properties provided by a client in a configuration document be respected or can
they all, or a subset of them, be ignored if the implementation precludes it? This should be
clarified in the specifications – the configuration document is advisory not compulsory – the client
should get information as to what was implemented or the client can query the property
document.

GFD-E.160 November 30, 2009

 29

Resolution: add to Section 5.2:
“Configuration properties passed to the service by a client are only an advisory, a service MAY
choose to ignore these and use default values”.

16. The GetResourceList operation is ambiguous: should one data resource address be provided
for each possible port/resource combination to be returned or just one data resource address per
resource? If the latter is the case, then how is the port to be chosen? Is this implementation-
dependant?
Consensus is for it to return all combinations.
Resolution: add to Section 5.5.1:
“In the case where a data resource exposed by a service via multiple addresses (e.g. via multiple
ports) then all possible data resource-address combinations SHOULD be returned”.

17. Experience of implementing WS-DAI with the the JAXB (http://jaxb.dev.java.net) framework for
binding XML documents to Java classes has identified an issue with the way in which
DataResourceAddressType is defined. Specifically, the problem is that the WS-Addressing
EndpointReferenceType was not intended to be extended by other types and is therefore
mapped to a final Java class by JAXB. As WS-DAI defines DataResourceAddressType as an
extension of EndpointReferenceType, the JAXB framework maps the WS-DAI XML Schema
to Java classes that will not compile (due to the illegal extension of a final class). Given the
importance of producing specifications compatible with tooling and the fact that this problem has
been experienced by multiple independent developers implementing WS-DAI, it is recommended
that EndpointReferenceType is used directly. This change requires minimal modificatons to
the specifications because even though DataResourceAddressType extends
EndpointReferenceType, no extra elements are defined by DataResourceAddressType, it
simply extends EndpointReferenceType without adding anything.
Resolution: remove the definition of DataResourceAddressType. In all places where
DataResourceAddressType is used, replace it with the WS-Addressing
EndpointReferenceType. Note that this change has already been successfully implemented
in two independent WS-DAI implementations in order to test the validity of the change.

7.2 Changes to the WS-DAIR document

1. WebRowSet reference – the appendices cite

 <xsd:import namespace="http://java.sun.com/xml/ns/jdbc"
 schemaLocation="webrowset-jdbc150.xsd" />

This can be accessed by visiting:

o [JSR114] J. Bruce, JSR-000114 JDBC RowSet Implementations, Final Release, 07 April
2004.

o http://jcp.org/aboutJava/communityprocess/final/jsr114.
o JDBC(TM) RowSet Implementations 1.0.1
o Select Reference Implementation then scroll down to JDBC Rowset Implementations

1.0.1 - Maintenance Release (July 16, 2004), select download, download, unzip the
bundle, unzip the rowset.jar in the bundle and the XSD file is in:
jdbc_rowset_tiger1.0.1mrel-ri/javax/sql/rowset/webrowset.xsd.

Resolution: update the WS-DAIR [JSR114] reference on p27 to include the above information as
to how the schema can be accessed.

2. On page 6 it states that WebRowSet is “one of the valid ResponseTypes”, yet on page 7 it
specifies that “All services adopting the SQLAccess interface MUST provide at least the following
value to indicate that rowset databases can be returned in WebRowSet [JSR114] format.” The
support for WebRowSet format should be made stronger. The fact that the WebRowSet schema is

GFD-E.160 November 30, 2009

 30

already imported in the SQLAccess XML Schema supports this course of action.
Resolution: state on p7 that:
“All services that have the the SQLAccess interface MUST provide support to return rowset
databases in WebRowSet [JSR114] format. As a consequence of this statement they MUST also
state that rowset databases can be returned in WebRowSet format.”

3. It is important that the distinction between a SQLResponse resource and the associated
SQLResponseAccess portType is respected and made clear. For example, p6 cites
SQLResponseAccess but section 6.4 cites the messages as from SQLResponse, when it
should also be SQLResponseAccess.
Resolution: make the following changes:

o p12, line before the XML fragment, change: “a SQLResponse interface” to “an SQL
response via the SQLResponseAccess interface”.

o Section headings for 6.4, 6.4,1, 6.4.2, 6.4.3, 6.4.4, 6.4.5, 6.4.6, 6.4.7 change
“SQLResponse” to “SQLResponseAccess”.

4. Similar comments apply to the distinction made between a SQLRowset resource and the
associated SQLRowsetAccess portType. For example, p6 cites SQLRowsetAccess but
section 7.4 cites the messages to be from SQLRowset when it should be SQLRowsetAccess.
Also, on p22 there is SQLRowset in the Section 7.4.1 heading but in the Section 7.4.2 heading it
is (correctly) cited as SQLRowsetAccess.
Resolutions: in Section headings for 7.4, 7.4.1, 7.4.2 change “SQLRowset” to
“SQLRowsetAccess”.

5. In the final paragraph on p8, SQLDescription is cited yet figure 1 cites
SQLAccessDescription as does p9 section 5.4.1 paragraph 1.
Resolution: change SQLDescription on p8 to SQLAccessDescription.

6. In p10 paragraph 2, DataseFormatURI should be DatasetFormatURI.
Resolution: change DataseFormatURI to DatasetFormatURI on p10.

7. There is an inconsistency between the SQLExecuteRequestParameters on p10 and in the
XML Schema of Appendix 2 where it is SQLParameter. SQLExpressionParameters also
occurs.
Resolution: change SQLExpressionParameters in the main text to SQLParameter.

8. On p13/14 the descriptions of the properties reads “The total number of … in the
SQLExecuteResponse”. But this section is describing an SQLReponse.
Resolution: change SQLExecuteResponse to SQLReponse.

9. In p14 section 6.2, the reference to SQLAccess should be to SQLResponseAccess.
Resolution: change SQLAccess to SQLResponseAccess on p14.

10. The comment on p15 section 6.4 paragraph 1 states:
“This allows access to each SQLExecuteResponseType in the SQLExecuteResponse”
which is confusing as the SQLExecuteResponseType has not been mentioned up to that point.
Is it a typo and meant to read SQLExecuteResponseItemType? It would be better if the text
also explained that it allows:
“indirect access to an SQLResponse resource created via an SQLAccessFactory”
which emphasises this is a different service for a different resource (rather than continually
referring to SQLExecute and SQLExecuteResponse).
Resolution: change:
“This allows access to each SQLExecuteResponseType in the SQLExecuteResponse”
to:
 “This allows access to each element in the SQLExecuteResponse providing indirect access to an
SQLResponse resource created via the SQLAccessFactory interface”.

11. In p16 section 6.4.2 paragraph 1, SQL Response should be replaced with SQLResponse for
consistency.
Resolution: change: “SQL Response”, in Section 6.4.2, with “SQLResponse”.

12. On p19, in the description of the “Count?” input parameter, “item” should be replaced with
“reference”.
Resolution: in the description of count on p19 change “one item” by “one reference”.

GFD-E.160 November 30, 2009

 31

13. Page 21 cites Rowset data resource but elsewhere it is cited as SQLRowset.
Reference: change Rowset to SQLRowset.

14. Page 20 cites RowsetPropertyDocument but on p21 and the example it is cited as
SQLRowsetPropertyDocument.
Resolution: in Section 7.1 on p20 change RowsetPropertyDocument to
SQLRowsetPropertyDocument.

15. On p23, in the description of the “Count?” Input parameter, “item” should be replaced with “tuple”.
Resolution: on p23 in the description of Count change “item” with “tuple”.

16. Sometimes “Set” starts with capital “S” and sometimes with small “s.” For example, SQLRowSet,
SQLRowset, SQLRowSetAccess, SQLRowsetAccess, SQLDataSet, SQLDataset - they need
to be consistent.
Resolution: "Set" should not start with an upper-case S in SQLRowset. All occurrences of
SQLRowset, either standalone or in another word should use lower-case s. For example,
SQLRowset is correct, but SQLRowSet is not. Similarly, SQLDataSet in Section 5.4.2 should be
changed to SQLDataset. Note, WebRowSet should not be changed to WebRowset.

17. In p7, at the end of section 5.1.3, /wsdair:SQLPropertyDocument is written twice, e.g.
/wsdair:SQLPropertyDocument//wsdair:SQLPropertyDocument. Also, in p21, at the
end of section 7.1.3, /wsdair:RowsetPropertyDocument is written twice.
Resolution: remove the second instance of “/wsdair_SQLPropertyDocument” for both
cases.

18. In p7, at the last paragraph, SQLDescription should be replaced with
SQLAccessDesciption for consistency with Figure 1.
Resolution: change SQLDescription in p7 last paragraph with SQLAccessDescription.

19. In Figures 1, 2 and 3, SQLRowSet should be replaced with DatasetData to be consistent with
section 5.4.2.
Resolution: change SQLRowSet in Figures 1, 2 and 3 to DatasetData.

20. On p9, section 5.4.1, GetSQLDocumentPropertyRequest and
GetSQLDocumentPropertyResponse should be replaced with
GetSQLPropertyDocumentRequest and GetSQLPropertyDocumentResponse respectively.
Resolution: change GetSQLDocumentPropertyRequest and
GetSQLDocumentPropertyResponse in Section 5.4.1 to
GetSQLPropertyDocumentRequest and GetSQLPropertyDocumentResponse respectively.

21. On p9, section 5.4.1, PropertyDocument is shown as the entity returned in
GetSQLDocumentPropertyResponse but actually it is an SQLPropertyDocument that can
be returned. Likewise for p15 is an SQLResponsePropertyDocument and for p23 an
SQLRowsetPropertyDocument.
Resolution: change PropertyDocument to be SQLPropertyDocument on p9, Section 5.4.1,
to SQLResponsePropertyDocument on p15 and to SQLRowsetPropertyDocument on p23.

22. On p19, section 6.5.1, SQLRowsetFactory, SQLRowsetFactoryRequest, and
SQLRowsetFactoryResponse should be replaced with GetSQLRowsetFactory,
GetSQLRowsetFactoryRequest, and GetSQLRowsetFactoryResponse respectively.
Resolution: change SQLRowsetFactory, SQLRowsetFactoryRequest, and
SQLRowsetFactoryResponse with GetSQLRowsetFactory,
GetSQLRowsetFactoryRequest, and GetSQLRowsetFactoryResponse respectively on p19,
Section 6.5.1.

23. In Appendix A.2, SQLExpression should be declared not to be abstract as it can be instantiated.
Resolution: remove the abstract="true" from the element declaration.

24. In Section 6.1.1, where SQLResponseItem is introduced, it is not clear whether the order of the
items retrieved is important or not, i.e. if we should hold a list of items in the same order in which
they are retrieved from a database or not. OGSA-DAI WS-DAIR opted to ignore the order in
which items were retrieved, it therefore maintained a different list for each of the items (row sets,
update counts, output values, communication areas, etc.). Clarification of this is required in the
document as this impacts on operations such as getSQLRowset(position, count) - do the

GFD-E.160 November 30, 2009

 32

parameters refer to a separate list of SQLRowsets or a list of response items which contain not
only SQLRowsets but other items too? This would potentially result in different parameter values
being used depending on how the implementation handles this. OGSA-DAI WS-DAIR opted for
having one big list that has the retrieved objects in the following order:

o SQLRowsets
o SQLUpdateCounts
o SQLOutputParameters
o SQLReturnValue
o SQLCommunicationsArea

Resolution: in Section 6.4.2 (GetSQLResponseItem), state that:
“response items SHOULD be ordered as follows:

o SQLRowsets
o SQLUpdateCounts
o SQLOutputParameters
o SQLReturnValue
o SQLCommunicationsArea

as this is the order in which they are listed in the specification document”.
In some cases other orderings may be used so this ordering cannot be guaranteed hence also
explicitly state that:
 “when retrieving a specific response item type (e.g. using GetSQLRowset, GetSQLUpdateCount
etc.), the position and count parameters MUST use relative ordering with respect to items of that
type.”
An example should be provided to show how this works, for example:
“if there are the following items [Rowset1, Rowset2, UpdateCount1, UpdateCount2], the
consumer should use GetUpdateCount with position=0 and count=1 to get UpdateCount1, i.e. not
position=2”.

25. In SQLExecute and in SQLExecuteFactory, the SQLExpressionParameters are assumed
to appear only in stored procedures or functions (“…if it is a call to a stored procedure or
function”). Does this mean that SQLExpressionParameters cannot be used for SQL
parameterised queries? OGSA-DAI WS-DAIR opted against this as it seemed intuitive that
parameterised queries should be supported as well.
Resolution: remove the text:
“if it is a call to a stored procedure or function.”
from the SQLExpressionParameters bullet of p10 and p12.

26. Compared to other similar operations in DAIR and DAIX, why does
SQLResponseFactory::SQLRowsetFactory not throw the InvalidPortTypeQNameFault
and InvalidConfigurationDocumentFault errors?
Resolution: SQLRowsetFactory should support InvalidPortTypeQNameFault and
InvalidConfigurationDocumentFault for consistency with the other factory operations.

27. Removal of the InvalidGetTuplesRequestFault associated with
SQLRowsetAccess::GetTuples is recommended. This fault is for “XML syntax error or XML
schema non-compliance” and if the specifications were consistent with this every operation would
have an equivalent fault. It can be expected that tooling such as Axis/JAXB etc. would ensure
schema compliance and such faults are redundant in the specifications.
Resolution: remove InvalidGetTuplesRequestFault from the XML Schema and WSDL.

28. In the main body of the text, the WSDL and XML Schema the entity SQLCommunicationsArea
is used. The related operation in the text is cited as GetSQLCommunicationsArea. However,
the XML Schema and WSDL for this operation uses GetSQLCommunicationsArea (for its
element, message parts and operation). According to “SQL, the complete reference” by James R.
Groff, Paul N. Weinberg the "SQL Communications area" was pioneered by early IBM products.
The most important part of it, the SQLCODE variable, became part of the SQL standard. The
specification should be consistent with the book and within itself.
Resolution: all occurrences of SQLCommunicationArea in the text, XML Schema and WSDL
should be changed to SQLCommunicationsArea.

GFD-E.160 November 30, 2009

 33

29. During testing it was found that GetSQLPropertyDocument sometimes failed with an operation
not found exception on the server. This is thought to be related to the following. In the portType
definition each input and output message is given a "name", e.g.

<wsdl:operation name="GetSQLPropertyDocument">
<wsdl:input message="wsdair:GetSQLPropertyDocumentRequest"
 name="GetSQLPropertyDocumentRequest"/>
<wsdl:output message="wsdair:GetSQLPropertyDocumentResponse"
name="GetSQLPropertyDocumentResponse"/>

The same comments apply to GetSQLResponsePropertyDocument and
GetSQLRowsetPropertyDocumentRequest. All other input and output message definitions do
not use the name attribute, e.g.

<wsdl:operation name="SQLExecute">
<wsdl:input message="wsdair:SQLExecuteRequest"/>
<wsdl:output message="wsdair:SQLExecuteResponse"/>
…

Resolution: the name="..." attributes of the GetSQLPropertyDocument operation
messages in the WSDL should be removed. This will make them consistent with other operations
as defined by the WS-DAI-* WSDL documents. A check for consistency across the board
(including other realisations) should be done.

30. There are uses of both http://www.sqlquery.org/sql-92 and http://www.sql.org/sql-92. Googling
http://www.sqlquery.org/sql-92 throws up the example in WS-DAIR as the fourth hit. The first
three hits have no trace of this URL, which does not exist. An exact search only throws up one hit
- WS-DAIR! The use of this URL is not recommended as an example language URI for SQL in
the specification document.
Resolution: use http://www.sql.org/sql-92 as a language URI for SQL in all examples in the WS-
DAIR document. Delete http://www.sqlquery.org/sql-92 wherever it appears.

31. Some stored procedures may return only return values and no actual datasets. It therefore seems
logical to make the <DatasetData> element of the SQLDataset (a part of the SQLResponse
message) optional.
Resolution: <DatasetData> is to be made an optional element of the SQLDataset element.

32. At times, an implementation may embed the default SQLRowset configuration document in the
SQLResponse property document – as the SQLResponse operation can create SQLRowset
resources a client could submit a default configuration document for their new SQLRowset. The
WS-DAIR XML Schema and WSDL for SQLResponse do not import SQLRowset types. The
OGSA-DAI WS-DAIR implementation changed this so that it does (otherwise Apache Axis could
not handle such documents). These were the imports added:
SQLAccess WSDL (wsdair_sqlaccess_porttypes.wsdl):

 <xsd:include schemaLocation="wsdair_sqlresponse_types.xsd"/>
 <xsd:include schemaLocation="wsdair_sqlrowset_types.xsd"/>

 SQLResponse WSDL (wsdair_sqlresponse_porttypes.wsdl)

 <xsd:include schemaLocation="./wsdair_sqlrowset_types.xsd"/>

Resolution: modify the WSDL to include the additional imports above to reflect the implicit
dependence of SQLResponse property documents on SQLRowset configuration document
schema (and likewise SQLAccess property documents on SQLResponse configuration
document schema).

GFD-E.160 November 30, 2009

 34

8 Conclusion
This document has reported the results of interoperability testing for two implementations of the WS-DAIR
specification. The two implementations satisfy the DAIS-WG interoperability testing criteria in [DAIS-
Interop]. A number of recommended changes to the WS-DAI and WS-DAIR specifications are suggested
which should improve clarity and interoperability between the existing and future implementations.

9 Security Considerations
This document does not address security issues. Security was not used for any of the
interoperability tests.

10 Contributors
Steven Lynden,
Information Technology Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),
Central 2, Umezono 1-1-1,
Tsukuba,
Ibaraki 305-8568
Japan.
steven.lynden@aist.go.jp

Mario Antonioletti (Corresponding Author),
EPCC,
JCMB,
The King’s Buildings,
Mayfield Road,
Edinburgh EH9 3JZ,
United Kingdom.
mario@epcc.ed.ac.uk

Mike Jackson,
EPCC,
JCMB,
The King’s Buildings,
Mayfield Road,
Edinburgh EH9 3JZ,
United Kingdom.
michaelj@epcc.ed.ac.uk

Sunil Ahn,
KISTI,
Gwahak-ro 335, Yuseong-gu,
Daejeon 305-806
Rep. of Korea
siahn@kisti.re.kr

11 Acknowledgements
Part of this work was made possible through resources provided by OMII-UK. OMII-UK is funded by
EPSRC through the UK e-Science Core Programme and through the JISC. We would also like to
acknowledge the National Institute of Advanced Industrial Science and Technology (AIST) and the Korea
Institute of Science and Technology Information (KISTI) for supporting this work.

GFD-E.160 November 30, 2009

 35

We would also like to thank Elias Theocharopoulos, one of the developers of the OGSA-DAI DAIR
implementation from the OGSA-DAI team, who spotted a fair number of the issues/problems with the
proposed recommendation that are addressed in this document.

12 Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this
recommendation. Please address the information to the OGF Executive Director.

13 Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use of the
information herein will not infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

14 Full Copyright Notice
Copyright (C) Open Grid Forum (2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the OGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

15 References

[GFD.152]

C. Catlett, C. de Laat, D. Martin, G. Newby and D. Skow, Open Grid Forum Documents Process
and Requirements. Open Grid Forum. June 2009. http://www.ogf.org//documents/GFD.152.pdf.

[DAIS-Interop]

S. Lynden, N. Paton, D. Pearson, Interoperability Testing for DAIS Working Group
Specifications. Draft, Global Grid Forum, 19 June 2006.

 http://www.ogf.org/documents/GFD.77.pdf.

[WS-DAI]

M. Antonioletti et al. Web Services Data Access and Integration (WS-DAI) Specification Version
1.0., Global Grid Forum, 21 June 2006. http://www.ogf.org/documents/GFD.74.pdf.

GFD-E.160 November 30, 2009

 36

[WS-DAIR]

M. Antonioletti et al. Web Services Data Access and Integration – The Relational Realisation
(WS-DAIR) Specification Version 1.0. Draft, Global Grid Forum, 21 June 2006.
http://www.ogf.org/documents/GFD.76.pdf.

[WS-DAIX]
M. Antonioletti et al. Web Services Data Access and Integration – The XML Realisation (WS-
DAIX) Specification Version 1.0. Draft, Global Grid Forum, 21 June 2006.
http://www.ogf.org/documents/GFD.75.pdf.

[JSR114]

J. Bruce, JSR-000114 JDBC RowSet Implementations, Final Release, 07 April
2004.http://jcp.org/aboutJava/communityprocess/final/jsr114.

GFD-E.160 November 30, 2009

 37

Appendix 1 SQL queries

The SQL queries referenced in the test suite executed using MySQL.

Query 1
select * from littleblackbook where id < 6;

+------+-------------------+-----------------------------------+------------+
| id | name | address | phone |
+------+-------------------+-----------------------------------+------------+
1	Ally Antonioletti	101 Antonioletti Road, San Jose	087192027
2	Amy Atkinson	70 Atkinson Crescent, Southampton	0105931111
3	Bartosz Chue Hong	30 Chue Hong Gardens, Winchester	04476816
4	Craig Dobrzelecki	72 Dobrzelecki Place, Edinburgh	0311043554
5	David Hume	75 Hume Lane, San Jose	02628860
+------+-------------------+-----------------------------------+------------+

Query 2
call proc_in_out(1,@var1,@var2)

+------+--------------+-----------------------------------+------------+
| id | name | address | phone |
+------+--------------+-----------------------------------+------------+
| 2 | Amy Atkinson | 70 Atkinson
Crescent, Southampton | 0105931111 |
+------+--------------+-----------------------------------+------------+

Query 3
Select func_in_out(‘1’);

+-------------------+
| func_in_out('1') |
+-------------------+
| Ally Antonioletti |
+-------------------+

Query 4
INSERT INTO littleblackbook VALUES (11,'Mike Hume','123 Atkinson Road, Winchester','0871231227');
Query OK, 1 row affected (0.00 sec)

Query 5
INSERT INTO littleblackbook VALUES (12,'Richard Smith','133 Highfield Road,
Manchester','087837464');
Query OK, 1 row affected (0.00 sec)

Query 6
select * from tabledoesnotexist;

SQL Communications Area details (obtained using OGSA-DAI WS-DAIR implementation):

SQLState: 42S02
Vendor Code: 1146
Message: Table 'wsdair.tabledoesnotexist' doesn't exist

GFD-E.160 November 30, 2009

 38

Appendix 2 soapUI Test Suite

The WS-DAIR inter-operability test suite used by AMGA and OGSA-DAI is implemented in soapUI
(www.soapui.org). SoapUI is a SOAP-based web services test and development tool.

You can use this suite with your own deployed services as described below. Examples of the settings
used for AMGA and OGSA-DAI WS-DAIR are given.

Prerequisites

These instructions assume that you have created a test database as described in Appendix 1 and have
configured a WS-DAIR service to expose this. It assumes that this service exposes at least one
SQLAccess-compliant ExternallyManaged resource.

Download

1. Download soapUI from http://www.soapui.org, and install it on your computer.

The test suite uses SoapUI version 3.0.1. All the details explained here assume that a user installed the
SoapUI tool on a Windows platform.

2. Download the WS-DAIR test suite from the DAIS-WG grid forge site:

• http://forge.gridforum.org//sf/wiki/do/viewAttachment/projects.dais-
wg/wiki/IssuesWithTheWSDAIRProposedRecommendation/wsdair_test_0_1.zip

 The downloaded file includes 5 files and 1 directory:

• wsdair_test_0_1.xml: main test suite
• property_amga.txt: properties defined for AMGA WS-DAIR (eg. service endpoints)
• property_ogsa.txt: defined for OGSA-DAI WS-DAIR (eg. service endpoints)
• runTestAMGA.bat: test executable for AMGA WS-DAIR
• runTestOGSA.bat: test executable for OGSA-DAI WS-DAIR
• schema: wsdl and xsd files included in the WS-DAI & WS-DAIR specification and some of

wsdl files for OGSA-DAI WS-DAIR implementation.

Configure

1. Create a property file for your own implementation. There are two examples included in the test suite

distribution. The following is an example property file (property_amga.txt) for AMGA WS-DAIR.

DRAN=http://150.183.250.215:8844/SQLAccess/wsdair_test
RandomAccess=1
EP_SQLAccess=http://150.183.250.215:8844/SQLAccess
EP_SQLAccessFactory=http://150.183.250.215:8844/SQLAccess
EP_SQLResponse=http://150.183.250.215:8844/SQLResponse
EP_SQLResponseFactory=http://150.183.250.215:8844/SQLResponse
EP_SQLRowset=http://150.183.250.215:8844/SQLRowset
EP_CoreResourceList=http://150.183.250.215:8844/CoreResourceList
EP_CoreDataAccess_SQLAccess=http://150.183.250.215:8844/CoreDataAccess
EP_CoreDataAccess_SQLRowset=http://150.183.250.215:8844/CoreDataAccess

• DRAN: the Data Resource Abstract Name for the initial default resource.
• RandomAccess: Set to 1 if the SQLResponse service supports “Random Access”.
• EP_SQLAccess: the endpoint for the SQLAccess portType.
• EP_SQLAccessFactory: the endpoint for SQLAccessFactory portType.
• EP_SQLResponse: the endpoint for the SQLResponse portType.
• EP_SQLResponseFactory: the endpoint for SQLResponseFactory portType.
• EP_SQLRowset: the endpoint for the SQLRowset portType.

GFD-E.160 November 30, 2009

 39

• EP_CoreResourceList: the endpoint for the CoreResourceList portType.
• EP_CoreDataAccess_SQLAccess: the endpoint for the CoreDataAccess portType for an

SQLAccess resource.
• EP_CoreDataAccess_SQLRowset: the endpoint for the CoreDataAccess portType for an

SQLRowset resource.

2. Create a batch script for your own implementation. The following is an example batch script

(runTestAMGA.bat) for AMGA WS-DAIR

set DRAN=http://150.183.250.215:8844/SQLAccess/wsdair_test
set RandomAccess=1
set EP_SQLAccess=http://150.183.250.215:8844/SQLAccess
set EP_SQLAccessFactory=http://150.183.250.215:8844/SQLAccess
set EP_SQLResponse=http://150.183.250.215:8844/SQLResponse
set EP_SQLResponseFactory=http://150.183.250.215:8844/SQLResponse
set EP_SQLRowset=http://150.183.250.215:8844/SQLRowset
set EP_CoreResourceList=http://150.183.250.215:8844/CoreResourceList
set EP_CoreDataAccess_SQLAccess=http://150.183.250.215:8844/CoreDataAccess
set EP_CoreDataAccess_SQLRowset=http://150.183.250.215:8844/CoreDataAccess

C:\"Program Files"\eviware\soapui-3.0.1\bin\testrunner.bat -fresult -r -PDRAN=%DRAN% -
PRandomAccess=%RandomAccess% -PEP_SQLAccess=%EP_SQLAccess% -
PEP_SQLAccessFactory=%EP_SQLAccessFactory% -PEP_SQLResponse=%EP_SQLResponse% -
PEP_SQLResponseFactory=%EP_SQLResponseFactory% -PEP_SQLRowset=%EP_SQLRowset% -
PEP_CoreResourceList=%EP_CoreResourceList% -
PEP_CoreDataAccess_SQLAccess=%EP_CoreDataAccess_SQLAccess% -
PEP_CoreDataAccess_SQLRowset=%EP_CoreDataAccess_SQLRowset% -r wsdair_test_0_1.xml

It is necessary to modify the property values and the path of “testrunner.bat” program properly, these are
underlined at the above example, according to your WS-DAIR deployment, used test platform and the
installed location of soapUI.

Run the tests with command line interface

1. Execute the created batch file at the configure step 2.

C:\wsdair_test> runTestAMGA.bat

2. Check “result” directory to see whether there are failed TESTs.

C:\wsdair_test> dir /w result
[.]
[..]
15OptionalStoredProcedure-Function-TEST24-0-FAILED.txt
15OptionalStoredProcedure-Function-TEST25-0-FAILED.txt
15OptionalStoredProcedure-FunctionSQLResponse-TEST28-0-FAILED.txt
15OptionalStoredProcedure-FunctionSQLResponse-TEST29-0-FAILED.txt
15OptionalStoredProcedure-Procedure-TEST26-0-FAILED.txt
15OptionalStoredProcedure-Procedure-TEST27-0-FAILED.txt
16OptionalSQLCommunicationArea-SQLCommunicationArea-TEST33-0-FAILED.txt
16OptionalSQLCommunicationArea-SQLCommunicationArea-TEST34-0-FAILED.txt

Run the tests with GUI interface

1. Start soapUI and Load the test suite :

• Select File=>Import Project
• Select the WS-DAIR test suite XML file. (wsdair_test_0_1.xml)

2. Import property definition file:

• Double click on the project name (wsdair_test_0_1)

GFD-E.160 November 30, 2009

 40

• In the Name-Value table, click “Load Property” icon, and select the created property file at
configure step 1. Now you should see that all the properties have proper values for your
implementation.

3. Run the tests

To run a test suite, double click on the suite name and press the green arrow in the window that appears.
Some tests assume that previous ones have run, so run the suites in the following order:

• 1_1_Optional_CoreResourceList – if applicable.
• 1_2_Mandatory.
• 1_4_Optional_GenericQuery – if applicable.
• 1_5_Optional_StoredProcedure – if applicable.
• 1_6_Optional_Modification – if applicable.
• 1_6_Optional_SQLCommunicationArea – if applicable.

Possible issues

An error that may occur if validating SOAP requests is:

line 9: Element not allowed:
DatasetFormatURI@http://www.ggf.org/namespaces/2005/12/WS-DAI in element
SQLExecuteRequest@http://www.ggf.org/namespaces/2005/12/WS-DAIR.

The WSDL and XML Schema allow this, as do certain WSDL and XML Schema validators. The authors
conclude that this is a soapUI issue.

TEST16 – GetSQLRowsetFactory might fail with an error:

Schema Compliance - FAILED
-> line1: Missing operation [GetSQLRowsetFactory] in wsdl definition

As described in section 6.1.2 the authors are of the opinion that this is a soapUI issue rather than
necessarily an implementation issue.

