
GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 1 of 25  

 

Data Format Description Language (DFDL) v1.0 

 Experience Document 2 
Empty, Missing, Defaults, Arrays 

 
 
 
Status of This Document 
 
Grid Working Document (GWD) 
 
Copyright Notice 
 
Copyright © Open Grid Forum (2013-2014).  Some Rights Reserved. Distribution is unlimited. 
 
Abstract 
 
This document provides experience information to the OGF community on the original Data 
Format Description Language (DFDL) 1.0 specification (GFD-P-R.174). 
 
It describes shortcomings experienced in the area of ‘missing’ elements, default value handling, 
repeating elements and sequence separator suppression. 
 
All resulting errata have been incorporated into a revised Data Format Description Language 
(DFDL) 1.0 specification (GFD-P-R.207) which obsoletes GFD-P-R.174. 
 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 2 of 25  

 

 

 
Contents 

 
 

1. Introduction...................................................................................................................3 
2. Erratum 3.26. Empty, Missing and Defaults .....................................................................4 
3. Erratum 3.11. Arrays ................................................................................................... 10 
4. Erratum 3.14. Separator Suppression Policy ................................................................. 14 
5. Erratum 2.115. Round Trip Ambiguities ........................................................................ 19 
6. Security Considerations ............................................................................................... 20 
7. Contributors ................................................................................................................ 21 
8. Intellectual Property Statement..................................................................................... 22 
9. Disclaimer................................................................................................................... 23 
10. Full Copyright Notice ................................................................................................... 24 
11. References ................................................................................................................. 25 

 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 3 of 25  

1. Introduction 

DFDL Working Group Action 140 was raised in September 2011 to address shortcomings 
experienced in the DFDL 1.0 specification in the area of ‘missing’ elements and default value 
handling, particularly on parsing.  The resultant investigation was wide ranging and uncovered 
further issues about data representation, repeating elements and sequence separator 
suppression.   

This document records the conclusions of DFDL Working Group Action 140, and should be 
treated as a companion document to DFDL 1.0 Experience Document 1 [DFDLX1]. Specifically it 
provides the detailed content for these errata: 
 

 Erratum 3.26  

 Erratum 3.11 

 Erratum 3.14 

 Erratum 2.115 

This document uses terminology defined in [DFDLX1] erratum 2.112, and refers to the revised 

grammar in [DFDLX1] Chapter 5. 

 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 4 of 25  

 

2. Erratum 3.26. Empty, Missing and Defaults  
 
As specified in the original DFDL 1.0 specification [DFDL], default values are used as follows.  
 

 During unparsing, an Infoset with missing required element occurrences is augmented with 
values so that the resultant data stream that is generated is correct according to the schema 
and may be successfully re-parsed.   

 During parsing, a sparse data stream with missing required element occurrences has values 
added to the Infoset so that the resultant Infoset is correct according to the schema.  

 
The parsing behaviour has the effect of making an invalid data stream valid. This is not actually a 
good idea. Why is DFDL trying to handle missing required occurrences in a data stream? If an 
occurrence may be missing from the data stream, it should be modelled as optional. Further this 
is not how XML Schema 1.0 [XSDL1] uses default values for elements. 
 
For elements, XML Schema 1.0 uses defaults to fill in values for occurrences that are present but 
have empty content.  We shall use this principle for DFDL, as the main use case for using 

defaults on parsing is supplying a value for an empty required occurrence of a simple element 
(the CSV adjacent separator example). In order for this to work, we must be able to distinguish 
clearly between an empty occurrence and a missing occurrence when parsing.  
 
Some definitions are needed to cover the range of representations that are possible in the data 
stream for an element. These definitions assume the revised grammar from Chapter 4 of DFDL 
1.0 Experience Document 1 [DFDLX1]. 
 
Nil representation 

An element occurrence has a nil representation if the element is nillable and the occurrence 
either: 

a) conforms to the grammar for SimpleNilLiteralElementRep or 
ComplexNilLiteralElementRep. NilElementInitiator and NilElementTerminator regions 

must be conformant with nilValueDelimiterPolicy. (If non-conformant it is not a processing 
error and the representation is not nil). 

b) conforms to the grammar for SimpleNormalRep and its value is 
NilLogicalElementValue.  

LeadingAlignment, TrailingAlignment, PrefixLength regions may be present. 
 
Empty representation 

An element occurrence has an empty representation if the occurrence does not have a nil 
representation and it conforms to the grammar for SimpleEmptyElementRep or 
ComplexEmptyElementRep.  EmptyElementInitiator and EmptyElementTerminator regions 

must be conformant with emptyValueDelimiterPolicy. (If non-conformant it is not a processing 
error and the representation is not empty). The occurrence’s content in the data stream is of 
length zero. LeadingAlignment, TrailingAlignment, PrefixLength regions may be present.  
 
Normal representation 

An element occurrence has a normal representation if the occurrence does not have the nil 
representation or the empty representation and it conforms to the grammar for SimpleNormalRep 
or ComplexNormalRep.  
 
Absent representation 

An element occurrence has an absent representation if the occurrence does not have a nil or 
empty or normal representation, and it conforms to the grammar for AbsentElementRep. The 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 5 of 25  

occurrence’s representation in the data stream is of length zero. Consequently, the Initiator, 
Terminator, LeadingAlignment, TrailingAlignment, PrefixLength regions must not be present.  
 
Example of an absent representation. During unparsing, if an optional element does not have an 
item in the infoset then nothing is output. However if a separator of an enclosing structure is 
subsequently output as the immediate next thing, then a subsequent parse of the element may 
return a representation of length zero (this is dependent on lengthKind). If this happens, and this 
length zero representation does not conform to either the nil representation or the empty 
representation or the normal representation, then it is the absent representation, and it behaves 
as if the element occurrence is ‘missing’.  
 
Missing 

When parsing, an element occurrence is missing if it does not have any of the above 
representations, or it has the absent representation. When unparsing, an element occurrence is 
missing if there is no item in the infoset.   
 
When parsing, an occurrence is ‘known to exist’ if it has normal, nil or empty representation, or an 
occurrence is ‘known not to exist’ if it has absent representation or is missing.  
 

 
Examples 
 
The following examples illustrate missing and empty. 
 
<xs:sequence dfdl:separator="," dfdl:terminator="@"  

             dfdl:separatorSuppressionPolicy="trailingEmpty"> 

 <xs:element name="A" type="xs:string"    

                  dfdl:lengthKind="delimited"/> 

 <xs:element name="B" type="xs:string" minOccurs="0" 

                  dfdl:lengthKind="delimited"/> 

 <xs:element name="C" type="xs:string" minOccurs="0" 

                  dfdl:lengthKind="delimited"/> 

</xs:sequence> 

 

In data stream aaa,@ element B has the empty representation, and element C does not have a 

representation so is missing. 
 
<xs:sequence dfdl:separator="," 

             dfdl:separatorSuppressionPolicy="anyEmpty"> 

 <xs:element name="A" type="xs:string"  

                  dfdl:lengthKind="delimited" dfdl:initiator="A:" 

                  dfdl:emptyValueDelimiterPolicy=initiator”/> 

 <xs:element name="B" type="xs:string" minOccurs="0" 

                  dfdl:lengthKind="delimited" dfdl:initiator="B:" 

                  dfdl:emptyValueDelimiterPolicy=”initiator”/> 

 <xs:element name="C" type="xs:string" minOccurs="0" 

                  dfdl:lengthKind="delimited" dfdl:initiator="C:" 

                  dfdl:emptyValueDelimiterPolicy=initiator”/> 

</xs:sequence> 

 
In data stream A:aaaa,C:cccc  element B does not have a representation so is missing. 

 

In data stream A:aaaa,B:,C:cccc element B has the empty representation. 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 6 of 25  

In the data stream A:aaaa,,C:cccc element B has the absent representation so is missing. 

 
Note that round tripping is not guaranteed. An empty string in the Infoset will be output as the 
empty representation, but if the element is nillable and empty string (%ES;) is a nil value and 
nilValueDelimiterPolicy is the same as emptyValueDelimiterPolicy, then when parsed the Infoset 
will contain nil. 

 
 
Establishing representation when parsing 
 
If a processing error or schema definition error occurs either when parsing a simple element, or 
when parsing a complex element and a processing error is not suppressed by an enclosed point 
of uncertainty, then the element occurrence is ‘known not to exist’. This is equivalent to the 
element being missing. 
 
If no such error occurs, then an element occurrence either has a representation (one of nil, 
empty, normal or absent) or is missing.  
 
If it has a representation, then it must be established if it is nil, empty, normal or absent. Key to 
this is to see if the content is of length zero. This is lengthKind dependent. 
 

o explicit => length is zero (either fixed or from expression evaluation)  
o prefixed => prefix length is zero 
o implicit (simple) => length is zero from type facets 

o implicit (complex) => consumed length is zero upon return from descending into children.   
o delimited => length is zero after scanning for delimiter(s)  
o pattern => pattern returns zero length match  
o endOfParent => already positioned at parent’s end so length is zero  
 
For a simple element, length plus initiator and terminator enables the representation to be 
established. 
 
For a complex element, length plus initiator and terminator enables the nil representation to be 
established

1
, but all other representations can only be determined by descending into the 

complex type for the element. If the descent returns successfully (that is, no unsuppressed 
processing error occurs) then the other representations may be established. 
 
The DFDL parser shall not descend into a complex element when it has established that the 
element occurrence does not have a representation or is missing or has the absent 

representation. Otherwise this could give rise to misleading error messages where the parser 
reported that required child elements were missing required occurrences. (This is consistent with 
XML Schema validation, where if a required element is missing, it gets reported as such, and 
there is nothing reported about its children). 

 
For the purposes of establishing representation, a local sequence or choice effectively has 
lengthKind ‘implicit’, except that delimiting regime of parent is retained.  
 
 

 
Empty representation when parsing 
 

                                                 
1
 It is a schema definition error if a complex element is nillable ‘true’ and lengthKind ‘implicit’.  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 7 of 25  

If empty representation is established when parsing, the possibility of applying a default value 

arises. Essentially, if a required occurrence of an element has empty representation, then a 
default value will be applied if present, though there are a couple of variations on this rule. 
Remember that in order to have established empty representation, the occurrence must be 
compliant with the emptyValueDelimiterPolicy for the element, and for a complex element the 
parser must have descended into the type and returned with no unsuppressed processing error. 
 
There are three main cases to consider. In what follows the term ‘string’ encompasses both 
xs:string and xs:hexBinary as these are the two data types for which a zero length (empty) string 
is valid for the type. This behaviour is independent of occursCountKind. 
 

Simple element (non-string) 

 
Required occurrence: If a XSD ‘default’ or ‘fixed’ property is specified then an item is added to the 
Infoset using the value of the property, otherwise nothing is added to the Infoset. (This may cause 
a subsequent processing error – see ‘Required occurrences’ below).  
 
Optional occurrence: Nothing is added to the Infoset.  
 

Simple element (string) 
 
Required occurrence: If a XSD ‘default’ or ‘fixed‘ property is specified then an item is added to the 
infoset using the value of the property, otherwise an item is added to the Infoset using empty 
string as the value.  
 
Optional occurrence: If emptyValueDelimiterPolicy is not ‘none’

2
 then an item is added to the 

Infoset using empty string as the value, otherwise nothing is added to the Infoset.  
 
(To prevent unwanted empty strings from being added to the Infoset, use minLength > ‘0’ and a 
dfdl:assert that uses the dfdl:checkConstraints() function, to raise a processing error.) 

 
Complex element  
 
Required occurrence: An item is added to the Infoset.  
 
Optional occurrence: If emptyValueDelimiterPolicy is not ‘none’ then an item is added to the 
Infoset, otherwise nothing is added to the Infoset.  
 
For both required and optional occurrences, the Infoset item may also have a child item.  

A) If the first child element of the complex type is a required simple element, then an empty 
string or default value will also be added to the Infoset.  

B) If the first child element of the complex type is a required complex element, then an item 
is added to the Infoset (which may itself have a child via A) 

Example:  

Consider a sequence S0 with a separator that contains among other content an optional non-
nillable non-initiated element E1 of complex type. The content of the type is a sequence S1 with a 
different separator and the first child is a required non-initiated element E2 of type xs:string. The 
lengthKind of both E1 and E2 is ‘delimited’. The representation of E1 has zero length, that is, the 
data contains adjacent S0 separators. On processing E1, the parser will establish a point of 
uncertainty and descend into E1’s complex type and process E2. It scans for in-scope delimiters 

                                                 
2
 If other than ‘none’, either an initiator, terminator or both must have been found in the data stream. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 8 of 25  

and immediately encounters S0 separator. E2 has the empty representation, so E1 is added to 
the Infoset along with a value of empty string for E2. All other content of S1 is missing, so the 
parser returns from the descent. E1 is therefore ‘known to exist’. Because the position in the data 
has not changed, E1 therefore has the empty representation. Because E1 is empty and optional it 
is not added to the Infoset, and the Infoset items for E1 and E2 are discarded. 

 
Missing when unparsing 
 
If an element is missing from the Infoset when unparsing, the possibility of applying a default 

value arises.  Essentially if a required occurrence of an element is missing, then a default value 
will be applied if present. 
 
There are two main cases to consider. This behaviour is independent of occursCountKind. 
 

Simple element 
 
Required occurrence: If a XSD ‘default’ or ‘fixed’ property is specified then an item is added to the 
augmented Infoset using the property value, otherwise nothing is added. (This may cause a 
subsequent processing error – see ‘Required occurrences’ below).   
 
Optional occurrence: Nothing is added to the augmented Infoset. 
 

Complex element  
 
Required occurrence: An item is added to the augmented Infoset.  
 
Optional occurrence: Nothing is added to the augmented Infoset.  
 
For a required occurrence, the unparser descends into the complex type:  
o For a sequence, each child element is examined in schema order and the rules for simple 

and complex elements applied (recursively). The lack of a default value may give rise to a 
processing error, as described below.  

o For a choice, each branch is examined in schema order and the above rules applied 
recursively to the branch. The lack of a default value may give rise to a processing error, as 
described below, and if so the error is suppressed and the next branch is tried, otherwise that 
branch is selected. It is a processing error if no choice branch is ultimately selected.  

 
 
Required occurrences 
 
The specification currently has the concept of 'Required in a required context'.  This was added 
so that the DFDL parser did not cause speculation to succeed by the application of defaults 
making a bad data stream good. But as we are now saying that the parser does not apply 
defaults for missing element occurrences, then this concept does not need to be stated explicitly, 
and the sub-section should be removed.  
 
On parsing, if a required occurrence does not produce an item in the Infoset (after any default is 
applied) then it is a processing error or a validation error (if enabled), dependent on 
occursCountKind (see section 3).  
 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 9 of 25  

On unparsing, if a required occurrence does not produce an item in the augmented Infoset (after 
any default is applied) then it is a processing error or a validation error (if enabled), dependent on 
occursCountKind (see section 3).  
 

 
Optional occurrences 
 
On parsing, nothing is added to the Infoset for an optional occurrence if it is missing or has the 
absent representation. If it has empty representation, then there are circumstances when an item 
is added to the Infoset, as described earlier. This is independent of occursCountKind. 
 
On unparsing, nothing is added to the augmented Infoset nor output to the data stream for an 
optional occurrence if it is missing (including any framing). This is independent of 
occursCountKind. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 10 of 25  

3. Erratum 3.11. Arrays   
 
The original DFDL 1.0 specification [DFDL] does not fully define the behaviour for the different 
occursCountKind property enums. It is especially light on unparsing behaviour. We rectify that 
here. 
 

Parsing 
 

The full behaviour for parsing arrays and non-arrays is: 
 
If minOccurs = maxOccurs = 1  

  Expect exactly 1 occurrence  

  Processing error if no occurrence found or defaulted 

  Stop looking after this occurrence found or defaulted 

occursCountKind is never examined and need not be defined 

Else // 

Select occursCountKind  
    Case: fixed  

    Schema definition error if minOccurs <> maxOccurs 

      Expect maxOccurs occurrences 

      Processing error if < minOccurs occurrence found or defaulted 

    Stop looking when maxOccurs occurrences found 

  Case: implicit 

      Expect up to maxOccurs occurrences 

      Processing error if < minOccurs occurrences found or defaulted 

Stop looking if >= minOccurs occurrences found and known not to 

exist occurs for an occurrence 

    Stop looking if and when maxOccurs occurrences found (if not    

    unbounded) 

    Case: parsed 

      Expect any number of occurrences 

Parse as many occurrences as possible until known not to exist 

occurs for an occurrence 

      Validation error if < minOccurs occurrences found or defaulted 

 Validation error if > maxOccurs occurrences found or defaulted 

    Case: expression 

      Evaluate occursCount to give number of occurrences 

      Expect occursCount occurrences  

      Processing error if occursCount occurrences not found 

      Stop looking when occursCount occurrences found 

      Validation error if < minOccurs occurrences found or defaulted 

 Validation error if > maxOccurs occurrences found or defaulted 

    Case: stopValue 

      Expect any number of occurrences 

      Parse occurrences until logical stop value is found  

 Processing error if stop value not found even when zero  

      occurrences 

 Stop value is never added to Infoset 

      Validation error if < minOccurs occurrences found or defaulted 

 Validation error if > maxOccurs occurrences found or defaulted 

Endif 

 

A ‘found occurrence’ is one that results in an item being added to the Infoset. Additionally,  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 11 of 25  

the DFDL parser may apply a default value when it encounters an occurrence with an empty 
representation, as described in section 2.  
 
When parsing an array, points of uncertainty (PoU) only occur for certain occursCountKinds, as 
follows: 
 

 fixed. No PoU (maxOccurs occurrences expected). 

 implicit. PoU exists after minOccurs occurrences found and until maxOccurs found. 

 parsed. PoU exists for all occurrences 

 expression. No PoU (occursCount occurrences expected) 

 stopValue. No PoU (stopValue must always be present, even when minOccurs=0).  
 
 

Unparsing 
 

The full behaviour for unparsing arrays and non-arrays is: 
 
If minOccurs = maxOccurs = 1 

  Expect exactly one occurrence 

Processing error if no occurrence found or defaulted 

Processing error if more than 1 occurrence found 

occursCountKind is never examined and need not be defined 

Else  

Select occursCountKind  
    Case: fixed 

    Schema definition error if minOccurs <> maxOccurs 

      Expect maxOccurs occurrences 

      Processing error if < minOccurs occurrences found or defaulted 

    Processing error if > maxOccurs occurrences found  

  Case: implicit 

    Expect up to maxOccurs occurrences   

      Processing error if < minOccurs occurrences found or defaulted 

    Processing error if > maxOccurs occurrences found  

    Case: parsed 

      Expect any number of occurrences  

      Validation error if < minOccurs occurrences found or defaulted 

      Validation error if > maxOccurs occurrences found 

    Case: expression 

      Expect any number of occurrences  

      Validation error if < minOccurs occurrences found or defaulted 

      Validation error if > maxOccurs occurrences found 

    Case: stopValue 

      Expect any number of occurrences 

      Logical stop value unparsed and output after last occurrence 

      Validation error if < minOccurs occurrences found or defaulted 

      Validation error if > maxOccurs occurrences found 

Endif 

 

A ‘found occurrence’ is one that is in the Infoset. Additionally, the DFDL unparser may apply a 
default when an occurrence is missing from the Infoset, as described in section 2. 
 
 
 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 12 of 25  

Array and sequence equivalence 
 
The processing of an array is similar to the processing of an equivalent sequence of elements. 
The following two schemas have the same result assuming any set of identical DFDL element 
properties applied to them

3
 (excluding necessary name differences due to UPA rules, and any 

other differences described by the Notes that follow).   
 
<xs:sequence> 

 <xs:element name="a" type="string" minOccurs ="2" maxOccurs="4"  /> 

</xs:sequence> 

 

<xs:sequence> 

 <xs:element name="a1" type="string" /> 

 <xs:element name="a2" type="string" /> 

 <xs:element name="a3" type="string" minOccurs="0" /> 

 <xs:element name="a4" type="string" minOccurs="0" /> 

</xs:sequence> 

 
Notes: 
o The number of elements in the equivalent sequence is maxOccurs, unless occursCountKind 

is 'expression' in which case the number is occursCount.  
o When occursCountKind is 'stopValue' the sequence ends with an additional, hidden, simple 

element with the same properties, to handle the stop value itself. 
o When occursCountKind is 'stopValue', ‘parsed’ or ‘expression’ it is a validation error if ‘a1’ 

and/or ‘a2’ are missing from the sequence (rather than a processing error if the first two ‘a’ 
occurrences are missing from the array). 

 
 

Forward progress requirement 
 
To prevent an infinite loop, the parsing of an array that is potentially unbounded must terminate 
when the following are true:  

 The occurrence is a point of uncertainty;  
 The position in the data does not move during the parsing of the occurrence (including 

any associated Separator, PrefixSeparator or PostfixSeparator region);  
 The occurrence is known-to-exist with empty representation or nil representation.  

 
An array is potentially unbounded if any of the following are true:  

 dfdl:occursCountKind is 'stopValue'  

 dfdl:occursCountKind is 'parsed' 

 dfdl:occursCountKind is 'implicit' and XSDL maxOccurs is unbounded  
 

When dfdl:occursCountKind 'stopValue' this results in a processing error because the stop value 
will never be encountered.  
 
Further, to prevent unnecessary consumption of resources for large bounded values of XSDL 
maxOccurs, the parsing of an array must terminate when the following are true:    

 dfdl:occursCountKind is 'implicit';  

 The occurrence is a point of uncertainty;  
 The position in the data does not move during the parsing of the occurrence (including 

any associated Separator, PrefixSeparator or PostfixSeparator region);  
 The occurrence is known-to-exist with empty representation.  

 

                                                 
3
 With the exception of properties that are not permitted on arrays, such as inputValueCalc and outputValueCalc  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 13 of 25  

 

Parsing occurrences with non-normal representation 
Each time round the array loop, length extraction properties for the element are re-evaluated. It is 
therefore possible to have occurrences with different representations (nil, empty, normal, absent) 
in the same array (although with some lengthKinds certain combinations of representations are 
not possible). 
 
Occurrences with nil representation are added to the Infoset with value ‘nil’.  
 
Occurrences with empty representation are either added or not added to the Infoset according to 
the rules in section 2 above.  
 
Occurrences with absent representation are not added to the Infoset. For a required occurrence it 
may be a processing error, dependent on occursCountKind. 

Consider parsing an array where optional occurrences with empty representation are present in 
the data, but there are also later optional occurrences present with normal representation. Such 
an array is sometimes called a ‘sparse array’.  

1. If the indices of the occurrences are significant and need to be preserved, then the array may 
be modelled using an element with nillable ‘true’, nilKind ‘literalValue’ and nilValue ‘%ES;’. All 
occurrences with empty representation will then produce nil values in the Infoset, so the 
absolute positions of all occurrences are preserved.  

2. If the indices of the occurrences are not significant, then the array should be modelled using 
an element with nillable ‘false’. Optional occurrences with empty representation will not create 
items in the Infoset, so the absolute position of any optional occurrences with normal 
representation is not preserved. Optional occurrences with empty representation are 
therefore skipped.   

This behaviour is independent of occursCountKind unless explicitly stated otherwise. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 14 of 25  

4. Erratum 3.14. Separator Suppression Policy 
 
The description in the original DFDL 1.0 specification [DFDL] of DFDL processor behaviour when 
a sequence has a separator does not provide enough detail. The content is added to section 14.2 
and the table in section 14.2.1 is replaced. 
 
Additional properties apply to sequence groups that use text delimiters to separate one 
occurrence of a member of the group from the next. Such a delimiter is called a separator. DFDL 
provides several properties that control the parsing and writing of separators, and satisfy the 
requirement to model sequences where:  
 

1. A separator has alternative potential representations in the data. 
2. A separator is placed before, after or between occurrences in the data. 
3. Separators are used to indicate the position of occurrences in the data 
 
These requirements are addressed by the properties dfdl:separator, dfdl:separatorPosition and 
dfdl:separatorSuppressionPolicy. 
 
These properties combine to define the grammar for a sequence group with sequenceKind 
'ordered'. Not all combinations of the properties will give rise to a consistent grammar, so some 
combinations are disallowed and will give rise to a Schema Definition Error.  
 
In some sequences, the presence of separators alone is enough to establish the identification of 
occurrences within the sequence. Such a sequence is called a positional sequence.  

 
1.  Positional sequence 

Each occurrence in the sequence can be identified by its position in the data. Typically the 
components of such a sequence do not have an initiator. In some such sequences, the 
separators for optional zero-length occurrences may or must be omitted when at the end of the 
group. A positional sequence can be modelled by setting separatorSuppressionPolicy to 
'required', 'trailingEmptyStrict'  or 'trailingEmpty' 
 
2.  Non-positional sequence 

Occurrences in the sequence cannot be identified by their position in the data alone. Typically the 
components of such a sequence have an initiator. Such sequences allow the separator to be 
omitted for any optional zero-length occurrence. Speculative parsing and backtracking must be 
used to identify each occurrence.  A non-positional sequence can be modelled by setting 
separatorSuppressionPolicy to 'anyEmpty'.  
 

 

separatorSuppressionPolicy Enum 
 
Valid values ’never’, ‘anyEmpty’, ‘trailingEmpty’, 
‘trailingEmptyStrict’ 
 
Only applicable if separator is not "" (empty string) and 
sequenceKind is ‘ordered’.  
 
Controls the circumstances when separators are 
expected in the data when parsing, or generated when 
unparsing, if an element occurrence or group has a 
representation of length zero.  
 
 See section Error! Reference source not found. Error! 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 15 of 25  

Reference source not found.. 

 
When sequenceKind is ‘unordered’ then ‘anyEmpty’ is 
implied. 
 

Annotation: dfdl:sequence, dfdl:group (sequence) 

 
 

When parsing a sequence group that specifies a separator, the number of occurrences and 
separators that are expected in the data stream for a child element depends on several factors: 

- Whether the element is required 
- The occursCountKind of the element 
- The separatorSuppressionPolicy of the sequence 
- Whether occurrences are optional or required 
- Whether occurrences are trailing 
- The representation of the occurrences 

 
Potentially trailing element – An array or optional element describes an occurrence that is said to 
be potentially trailing if the element is capable of having a zero length representation and is 

followed in its enclosing group definition by only these kinds of schema components: 
1. calculated elements (those having dfdl:inputValueCalc)  
2. additional potentially trailing elements 
3. potentially trailing groups 

Intuitively, the array or optional element occurrence could be last. 
 
Potentially trailing group – A group is said to be potentially trailing if the group has no framing and 

contains only potentially trailing element declarations/references, or recursively similar sequence 
or choice groups, and is followed in its enclosing group definition by only additional potentially 
trailing elements or potentially trailing groups. 
 
Trailing or Actually Trailing – An element occurrence or group occurrence in the data is said to be 
actually trailing if it is potentially trailing and has zero-length representation and is not followed in 

the data by any other non-zero length element occurrence or group occurrence limited by the end 
of the enclosing sequence group. 
 

 
Separator 
suppression policy 

Explanation 

never All occurrences MUST be found in the data, along with their 
associated separator. 

trailingEmptyStrict Trailing occurrences MUST be omitted from the data, along with 
their associated separator.  

trailingEmpty Trailing occurrences MAY be omitted from the data, along with 
their associated separator. 

anyEmpty Occurrences that have zero length representation MAY be omitted 
from the data, along with their associated separator. It must be 
possible for speculative parsing to identify which elements are 
present.  

 
It is a schema definition error if a sequence has separatorSuppressionPolicy ‘never’ and a child 
element has occursCountKind ‘implicit’ and maxOccurs ‘unbounded’. 
 
It is a schema definition error if a sequence has separatorSuppressionPolicy ‘trailingEmptyStrict’ 
or ‘trailingEmpty’, and a child element has occursCountKind ‘implicit’ and maxOccurs ‘unbounded’ 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 16 of 25  

and either the child element cannot have potentially trailing occurrences or the child element can 
have potentially trailing occurrences but the element is not declared last in the sequence. 
 
 
 

Parsing 
 
When an element is required and is not an array then one occurrence is always expected along 
with its separator. The separatorSuppressionPolicy is not applicable and the implied behaviour is 
‘never’. 
 
Otherwise the behaviour is dependent on occursCountKind. 
 
When occursCountKind is ‘fixed’ minOccurs occurrences are always expected along with their 
separators. The separatorSuppressionPolicy is not applicable and the implied behaviour is 
‘never’. 
 
When occursCountKind is ‘expression’ occursCount occurrences are always expected along with 
their separators. The separatorSuppressionPolicy is not applicable and the implied behaviour is 
‘never’. 
 
When occursCountKind is ‘parsed’ any number of occurrences and their separators are expected. 
The separatorSuppressionPolicy is not applicable and the implied behaviour is ‘anyEmpty’.  
 
When occursCountKind is ‘stopValue’, any number of occurrences and their separators are 
expected followed by the stop value and its separator. The separatorSuppressionPolicy is not 
applicable and the implied behaviour is ‘anyEmpty’.  
 
When occursCountKind is ‘implicit’, between minOccurs and maxOccurs (inclusive) occurrences 
and their separators are expected. The separatorSuppressionPolicy is applicable and determines 

when separators are expected for optional zero length occurrences. 
 
The behaviour for ‘implicit’ is more fully expressed in matrix form. The cells in the matrix give the 
number of occurrences of element values that are expected in the data stream when parsing, for 
the different values of separatorSuppressionPolicy. The number of occurrences also depends 
whether maxOccurs is unbounded or not, and the position of the element in the sequence. The 
number of separators can be inferred from this, taking into account separatorPosition. 
 
Note: In the matrices below, it is important that the information is interpreted correctly. The 
separatorSuppressionPolicy property is carried on the sequence. The occursCountKind property 
is carried on an element in that sequence. 

 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 17 of 25  

dfdl: 
separatorSuppressionPolicy 

dfdl:occursCountKind 'implicit'  

Potentially Trailing Not Potentially Trailing 

maxOccurs unbounded maxOccurs bounded 

maxOccurs 

unbounded 

maxOccurs 

bounded 

Element 
not 

declared 

last 

Element 
declared last 

Element 

declared last 
or occurrence 

followed by 
end-of-group 

Element 
not 

declared 

last and 
occurrence 

not 
followed by 

end-of-

group 

never Schema definition error  

Schema 
definition 

error 

RepDef(min) 
~ Rep(max - 

min) 

trailingEmptyStrict 
 

RepDef(min) [ 
~ Rep(M < INF) 

~ 

RepNonZero(1) 
] 

RepDef(min) [ 
~ Rep(M < max 

- min) ~ 

RepNonZero(1) 
] 

RepDef(min) 
~ Rep(max - 

min) 

trailingEmpty 
RepDef(min) ~ 

Rep(M < INF) 

RepDef(min) ~ 

Rep(M <= max 
- min) 

anyEmpty   
RepDef(min) 
~ Rep(M < 

INF) 

RepDef(min) 
~ Rep(M <= 

max - min) 

 

Terminology used in the matrix: 

RepDef(min) means minOccurs occurrences of nil, empty or normal representation
4
. These are 

required occurrences so default rules apply for empty representations. If permitted, minOccurs 
may be 0, in which case there are no occurrences.  

Rep(M) means M occurrences of nil, empty, normal or absent representation. These are optional 
occurrences so default rules do not apply for empty representations. 

RepNonZero(1) means an occurrence of a nil, empty or normal representation where such a 
representation does not have zero-length

5
. This is an optional occurrence so default rules do not 

apply. 

Unparsing 
 
When an element is required and is not an array then one occurrence is always output along with 
its separator. The separatorSuppressionPolicy is not applicable and the implied behaviour is 
‘never’. 
 
Otherwise the behaviour is dependent on occursCountKind. 
 
When occursCountKind is ‘fixed’ or ‘expression’ the occurrences in the augmented Infoset are 
always output along with their separators. The separatorSuppressionPolicy is not applicable and 
the implied behaviour is ‘never’. 
 
When occursCountKind is ‘parsed’ non zero-length occurrences in the augmented Infoset are 
output along with their separators. The separatorSuppressionPolicy is not applicable and the 
implied behaviour is ‘anyEmpty’.  
 

                                                 
4
 Absent representation implies processing error for ‘implicit’ when less than or equal to minOccurs. 

5
 Absent representation always implies zero-length. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 18 of 25  

When occursCountKind is ‘stopValue’ non zero-length occurrences in the augmented Infoset are 
output along with their separators followed by the stop value and its separator. The 
separatorSuppressionPolicy is not applicable and the implied behaviour is ‘anyEmpty’.  

When occursCountKind is ‘implicit’ the occurrences in the augmented Infoset are output along 
with their separators. The separatorSuppressionPolicy is applicable and helps determine whether 
optional zero length occurrences and their separators are output.  

The behaviour for ‘implicit’ is more fully expressed in matrix form. The cells in the matrix give the 
number of occurrences of element values that are output to the data stream when unparsing, for 
the different values of separatorSuppressionPolicy. The number of occurrences also depends 
whether maxOccurs is unbounded or not, and the position of the element in the sequence. The 
number of separators output can be inferred from this, taking into account separatorPosition. 

dfdl: 

separatorSuppressionPolicy 
 

dfdl:occursCountKind 'implicit'  

Potentially Trailing Not Potentially Trailing 

maxOccurs 

unbounded 
maxOccurs bounded 

maxOccurs 
unbounded 

maxOccurs 
bounded 

Element 
not 

declared 

last 

Element 
declared 

last 

Element 
declared 

last or 
occurrence 

followed by 
end-of-
group 

Element not 
declared 

last and 
occurrence 

not followed 
by end-of-

group 

Never 
Schema definition 

error 

Unparse N occurrences ~ 
unparse (maxOccurs -- N) 

trailing zero-length 
occurrences 

Schema 
definition 

error 

Unparse N 

occurrences 
~ unparse 

(maxOccurs -

- N) trailing 
zero-length 

occurrences 

trailingEmptyStrict 

 

Unparse N occurrences 

(suppressing trailing zero-
length occurrences) 

 
trailingEmpty 

anyEmpty Unparse N occurrences (suppressing any optional zero-length occurrences) 

Terminology used in the matrix: 

N is the number of elements in the augmented Infoset, which includes any defaults. 

  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 19 of 25  

5. Erratum 2.115. Round Trip Ambiguities 

 
This chapter highlights some situations where taking an Infoset, unparsing it, and reparsing it will 
result in a second Infoset that is not the same as the original.  (However taking the second 
Infoset, unparsing it, and reparsing it, will result in a third Infoset which is the same as the 
second.) 
 
When unparsing, if a string Infoset item happens to contain a string that matches either one of the 
nilValues or the default value, it does not matter, the string’s characters are output, or if the value 
is the empty string, zero length content is output. (Along with an initiator or terminator if defined.) 
This creates an ambiguity where one can unparse an Infoset item which is not the special value 
nil, but when reparsed will produce nil in the Infoset.  

These ambiguities are natural. If the nilValue ”nil”, then encountering the characters “nil” in the 
data stream will parse to produce the special value nil in the Infoset. If you unparsed a string 

infoset item with contents of the characters “nil”, this will be output as the letters “nil”, which on 
parse will not produce a string with the characters “nil”, but rather the special value nil in the 

Infoset.  

To avoid this issue, one can use validation, along with a pattern that prevents the string from 
matching any of the nil values.  

Similarly, for some formats that use separators, when unparsing and there is no Infoset item, the 
unparser may still output a zero-length representation (meaning optional and not present). In this 
situation, one can unparse an Infoset where there is no Infoset item, but reparsing that data will 
create an Infoset item with special value nil or an empty string.  

Example: A nillable optional array element with occursCountKind ‘implicit’ and %ES; is the first 
nilValue, within a separated sequence with separatorSuppressionPolicy ”never”, but not 
potentially trailing. If there are less than maxOccurs items in the Infoset, separators will be output 
up to maxOccurs with zero length between the separators. On parsing, those zero lengths will be 
interpreted as nil, so the array element will always have maxOccurs Infoset items, some of which 
will be nil. 

  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 20 of 25  

6. Security Considerations 

Security considerations are dealt with in the corresponding sections of the DFDL 1.0 specification 
[DFDL].   
 
No additional security issues have been raised.  

  



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 21 of 25  

7. Contributors 
Stephen M. Hanson,  
IBM Software Group,  
Hursley,  
Winchester,UK 
smh@uk.ibm.com 
 
Michael J. Beckerle,  
Tresys Technologies, 
Columbia, MD, USA 
mbeckerle@tresys.com 
 
Tim Kimber,  
IBM Software Group,  
Hursley,  
Winchester,UK 
 
Stephanie Fetzer,  
IBM Software Group,  
Charlotte, USA  
 
 
 

mailto:smh@uk.ibm.com
mailto:mbeckerle@tresys.com


GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 22 of 25  

8. Intellectual Property Statement 
The OGF takes no position regarding the validity or scope of any intellectual property or other 
rights that might be claimed to pertain to the implementation or use of the technology described in 
this document or the extent to which any license under such rights might or might not be 
available; neither does it represent that it has made any effort to identify any such rights.  Copies 
of claims of rights made available for publication and any assurances of licenses to be made 
available, or the result of an attempt made to obtain a general license or permission for the use of 
such proprietary rights by implementers or users of this specification can be obtained from the 
OGF Secretariat. 
 
The OGF invites any interested party to bring to its attention any copyrights, patents or patent 
applications, or other proprietary rights which may cover technology that may be required to 
practice this recommendation.  Please address the information to the OGF Executive Director. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 23 of 25  

9. Disclaimer 
This document and the information contained herein is provided on an “As Is” basis and the OGF 
disclaims all warranties, express or implied, including but not limited to any warranty that the use 
of the information herein will not infringe any rights or any implied warranties of merchantability or 
fitness for a particular purpose. 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 24 of 25  

10. Full Copyright Notice 
 
Copyright (C) Open Grid Forum (2013). Some Rights Reserved.  
 
This document and translations of it may be copied and furnished to others, and derivative works 
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 
published and distributed, in whole or in part, without restriction of any kind, provided that the 
above copyright notice and this paragraph are included as references to the derived portions on 
all such copies and derivative works. The published OGF document from which such works are 
derived, however, may not be modified in any way, such as by removing the copyright notice or 
references to the OGF or other organizations, except as needed for the purpose of developing 
new or updated OGF documents in conformance with the procedures defined in the OGF 
Document Process, or as required to translate it into languages other than English. OGF, with the 
approval of its board, may remove this restriction for inclusion of OGF document content for the 
purpose of producing standards in cooperation with other international standards bodies.  
 
The limited permissions granted above are perpetual and will not be revoked by the OGF or its 
successors or assignees. 
 
 
 
 



GWD-E-215  Stephen M Hanson (IBM) 
OGF DFDL WG  September 2014 
dfdl-wg@ogf.org 

 

dfdl-wg@ogf.org                                            Page 25 of 25  

11. References 
 
[DFDL] OGF DFDL 1.0 specification 
http://www.ogf.org/documents/GFD.174.pdf/ 
  
[DFDLR] OGF DFDL 1.0 specification - revised 
http://www.ogf.org/documents/GFD.207.pdf/ 
 
[DFDLX1] DFDL Experience Document 1 
<To be added> 
 
[XSDL1] XML Schema Part 1: structures 
http://www.w3.org/TR/xmlschema-1/ 
 

http://www.ogf.org/documents/GFD.174.pdf/
http://www.ogf.org/documents/GFD.207.pdf/
http://www.w3.org/TR/xmlschema-1/

