
Schopf Informational [Page 1]

GFD-I.4 J.M. Schopf
Scheduling Working Group Northwestern University
Category: Informational July 2001

Ten Actions When SuperScheduling

Status of this Draft

This draft provides information for the Grid scheduling community. Distribution
of this memo is unlimited.

Copyright Notice

Copyright (c) Global Grid Forum (2001). All rights reserved.

Abstract

This document has three purposes. The first is to outline how a user currently
approaches the problem of scheduling across multiple administrative domains.
Please note that while these are grouped and numbered they do not in any way
refer to an ordering. The second purpose of this document is to show where a
small amount of effort could make a large amount of change and make life easier
for the application scientist. The third is to annotate where work related to
this is being performed, and what state it is currently in.

1. Introduction .. 2
2. Stages of SuperScheduling ... 2
Phase 1: Resource Discovery... 2
Phase 2: System Selection... 3
Phase 3: Run job.. 4

3. Examples .. 5
Phase 1: Resource Discovery... 5
Phase 2: System Selection... 6
Phase 3: Run job.. 7

4. Conclusion .. 8
5. Security Considerations ... 8
5. References .. 8
6. Author’s Addresses .. 9
Copyright Notice ... 9
Intellectual Property Statement ... 10

GFD-I.4 July 2001

Schopf Informational [Page 2]

1. Introduction

SuperScheduling has been defined as the process of scheduling resources where
that decision involves using multiple administrative domains. Several
different scenarios fall under this domain: searching multiple administrative
domains to use a single machine; speculatively submitting a job to single
machines at multiple sites where all but one of the submissions is canceled at
a later time; scheduling a single job to use multiple resources at a single or
multiple site.

We leave the definitions of “job” and “resource” purposely vague at this time
to avoid religious arguments. A job can be anything that needs a resource –
from a bandwidth request, to an application, to a set of applications (for
example, a parameter sweep). A resource is anything that can be scheduled, a
machine, disk space, some QoS network, a person, etc.

We use the word “step” and a numbering system for easy reference. This does
not imply that these actions are actually performed in this order, or that the
all MUST occur in every system that is modeled after this approach. In general,
don’t pay too much attention to the numbering, this is just one possible
ordering. Some of the steps may be iteractive, recursive, repeated, or just
plain ignored.

One of the primary differences between a superscheduler and other common
schedulers is that the superscheduler does not own the resources and therefore
does not have total control over them. Furthermore, the superscheduler does
not have control over the entire set of jobs on the system, or even necessarily
know about them, so decisions about an entire set of jobs to a resource cannot
be made. This lack of ownership and control are the sources of many of the
problems to be solved in this area.

The most common current superscheduler is the user. There are however several
efforts underway to change this [NAB99, Silver, PBS, Loadleveler, LSF]. This
document walks through the steps that a user currently (June 2000-July 2001)
goes through when scheduling a job over resources on multiple administrative
domains. In Section 3 examples of some of these steps are given with respect
to specific system implementations.

2. Stages of SuperScheduling

A user goes through three stages to schedule a job when it involves multiple
sites. Phase one is resource discovery, in which the user makes a list of
potential resources to use. Phase two involves gathering information about
those resources and choosing a best set to use. In phase three the user then
runs the job.

Examples of current approaches to aid users in these steps are given in §3.

Phase 1: Resource Discovery

Resource discovery involves the user selecting a set of resources to
investigate in more detail in phase two, information gathering. At the
beginning of this phase, the potential set of resources is the empty set, and
at the end of this phase, the potential set of resources is some set that has

GFD-I.4 July 2001

Schopf Informational [Page 3]

passed a minimal feasibility requirement. Most users do this in three steps:
authorization filtering, job requirement knowledge, and filtering to meet the
minimal job requirements.

Step 1 Authorization Filtering

It is generally assumed that a user will know which resources he or she has
access to in terms of basic services.

At the end of this step the user will have a list of machines or resources to
which he or she has access.

Step 2 Application requirement definition

In order to proceed in resource discovery, the user must be able to specify
some minimal set of job requirements in order to further filter the set of
feasible resources (see Step 3).

The set of possible job requirements can be very broad, and vary significantly
between jobs. It may include static details, such as the operating system or
hardware for which a binary of the code is available, or that the code is best
suited to a specific architecture. Dynamic details are also possible, for
example a minimum RAM requirement, connectivity needed, /tmp space needed, etc.
This may include any information about the job that should be specified to make
sure that the job can be matched to a set of resources.

Step 3 Minimal requirement filtering

Given a set of resources to which a user has access and the minimal set of
requirements the job has, the third step in the resource discovery phase is to
filter out the resources that do not meet the minimal job requirements. The
user generally does this step by going through the list of resources and
eliminating the ones that do not meet the job requirements as much as they’re
known. It could also be combined with the gathering of more detailed
information about each resource (step 4) (and in fact this is how most proposed
systems go about the process). However, when being done by hand, if a user can
eliminate an inappropriate resource it is done at this stage to simplify the
information gathering in the next phase.

Phase 2: System Selection

Given a group of possible resources (or a group of possible resource sets), all
of which meet the minimum requirements for the job, a single resource (or
single resource set) must be selected on which to schedule the job. This is
generally done in two steps: gathering information and making a decision.

Step 4 Gathering information (query)

In order to make the best possible job/resource match, a user needs to gather
dynamic information about the resources in question. Depending on the
application and resource in question, different information may be needed.

Take for instance the simple case of finding the best single resource for a job
to run on. A user might want to know the load on the various machines, or the

GFD-I.4 July 2001

Schopf Informational [Page 4]

queue lengths if the machine has queues. In addition, physical characteristics
and software requirements play a role – is the compiler you need on the
machine, is the disk big enough for the data, etc. Then there are
location/connectivity issues – is the machine close enough to the data store?

All of these issues are multiplied in the case of multiple resources.

Making an advance reservation (see Step 6) may or may not be a part of this
step.

Step 5 Select the system(s) to run on

Given the information gathered by the previous step, a decision of which
resource (or set of resources) should the user submit a job is made in the
step. This can and will be done in a a variety of ways.

Note that this does not address the situation of speculative execution – when a
job is submitted to multiple resources, and when one begins to run the other
submissions are cancelled. This is only the selection of a resource (or set of
resources).

Phase 3: Run job

The third phase of superscheduling is running a job. This involves a number of
steps, few of which have been defined in a uniform way between resources. They
include:

Step 6 (optional) Make an advance reservation

It may be the case that to make the best use of a given system, part or all of
the resources will have to be reserved in advance. Depending on the resource,
this can be easy or hard to do, may be done with mechanical means as opposed to
human means, and the reservations may or may not expire with or without cost.

Step 7 Submit job to resources

Once resources are chosen the application must be submitted to the resources.
This may be as easy as running a single command or as complicated as running a
series of scripts, and may or may not include setup or staging (see Step 8).

Step 8 Preparation Tasks

The Preparation stage may involve setup, staging, claiming a resveration, or
other actions needed to prepare the resource to run the application. One of
the first attempts at writing a scheduler to run over multiple machines at NASA
was considered unsuccessful because it did not address the need to stage files
automatically, for example.

GFD-I.4 July 2001

Schopf Informational [Page 5]

Step 9 Monitor progress (maybe go back to 4)

Depending on the application and its running time, users may monitor the
progress of their application and possibly change their mind about where or how
it is executing.

Step 10 Find out J is done

When the job is finished, the user needs to be notified.

Step 11 Completion tasks

After a job is run, the user may need to retrieve files from that resource in
order to do data analysis on the results, break down the environment, remove
temporary settings, etc.

3. Examples

Several parts of the process described in Section 3 have begun to be addressed
by current systems. In this section we address this work.

Phase 1: Resource Discovery

Step 1 Authorization Filtering

The current common solution to knowing where one is for the user to have a list
of user names, machine names, and passwords. While this is a security risk if
someone else finds the list, that access can be controlled by the user in most
cases (by, for example, locking it in the top drawer of a desk). While the
information is generally available when needed, this method is known for
problems with fault tolerance.

There has been some discussion on how this could be done automatically. One
way to accomplish this is with a PKI infrastructure with single-sign on to
simplify the pre-requisite authentication. Note that this is not neceesarily
true for the authorization. The authorization issue by itself is quite
important, and is not addressed here.

Alternatively, this information could be kept as part of a central information
service with other system information [FFK+97]. This approach is currently
being used by the KB scheduler from Poznan [Nab99], but has scalability
problems.

Another solution is the use of “Smart Cards”, which are credit card-like
devices that hold account information for a user on them. However, this assumes
that a central agency has agreed on how to issue smart cards between
administrative domains, and the smart card readers have been installed wherever
access is needed.

GFD-I.4 July 2001

Schopf Informational [Page 6]

Step 2 Application requirement definition

Currently, while the need for this information is recognized, for example with
AppLeS [Apples, BW96, BWF+96], the Network Weather Service [Nws,WSH99], Condor
ClassAds [RLS00, RLS98] etc., it is generally assumed in most system work that
the information is simply available. Very little work has been done to
automatically gather this data, or to store it for future use. This is in part
because the information may be hard to discover.

Attempts to have users supply this information on the fly has generally
resulted in data that has dubious accuracy - for example, notice how almost
every parallel scheduler requires an expected execution time, but almost every
system administration working with these schedulers compensates for the error
in the data, by as much as 50% in some [ASW99]. Attempts to gather the
information, for example by using forms, has been found to be extremely time
consuming as well [GFUWG99].

In the future, one can envision compilers that could aid in supplying basic
requirements for applications, or monitoring.

Step 3 Minimal requirement filtering

A resource description language (Condor’s ClassAds[Condor, RLS00, RLS98],
Globus’ RSL[CFK+98, FFK+97], etc.) in combination with some Grid Information
Service (GIS) could be used to perform this filtering, but has not yet to our
knowledge.

Phase 2: System Selection

Step 4 Gathering information (query)

Ideally, a user (or scheduling service) would ask “If I give this job to a
resource (or set of resources), how long will it take to run?” Howeverm this is
an unsolved question. Instead, one area that is low-hanging fruit would be to
have an interface for each scheduler/resource management system to query “If I
give you a job that looks like XX, when will it start?” [SC00].

This doesn’t answer the real question a user would like to ask, namely, when
will the job END, but it approximates it. There is a large body of predictive
work, but most of it requires additional information not available on current
systems.

There are various interfaces to data sources to help aid users collect some of
this information by hand. Most recent in these is the Globus/NCSA Grid
Searcher Project [Gridsearcher] which gives a user-friendly front-end to the
Globus MDS information service. Similarly, the Alliance User Portal [AUP] and
the Npaci Hotpage [hotpage] gather together some of the needed information for
the user.

GFD-I.4 July 2001

Schopf Informational [Page 7]

Step 5 Select the system(s) to run on

One system that could be extended to address some of this is the Condor
Matchmaker/classad system [Condor, RLS00, RLS98], which matches resources to
jobs based on user defined ranking equations

Phase 3: Run job

Step 6 (optional) Make an advance reservation

A current example of making an advance reservation involves a user calling a
system admin to reserve time on a large machine for demo purposes.

Several projects have concentrated on advance reservations [Legion, Silver,
PBS]. Additional work has been done by Roy [GARA, FRS00] in reserving
resources other than machines or networks.

Step 7 Submit job to resources

A typical example of a user doing this is running the qsub. For example:

qsub -l ncpus=4,walltime=2:00:00 MyJob

Step 8 Preparation tasks

Currently, a user will run scp or ftp to assure that the data files needed are
in place.

Several groups have begun to address this problem, one being Globus with their
High Throughput Broker (htb) [CFK+98]. HTB had scripts set up to submit a set
of directories to each needed machine and do the pre-staging for the user
automatically. Currently in Globus, GASS [GASS] provides staging.

Condor [Condor] also supports a variation of this where it actually runs an
extra process before and after the application is run to do staging and clean-
up.

Unicore [Unicore] can also support automated pre-staging.

Step 9 Monitor progress (maybe go back to 4)

Today, this is typically done by repetitively querying the resource for status
information

Step 10 Find out J is done

Often, submission scripts for parallel machines will include an email
notification parameter.

Step 11 Completion tasks

Currently, this is done most often by hand by the user using scp or ftp.

GFD-I.4 July 2001

Schopf Informational [Page 8]

Many of the current systems that do staging (Step 8) als o handle cleanup.

4. Conclusion

This document defines the steps a user follows to make a scheduling decision
across multiple administrative domains at the present time.
We also review current approaches in these areas.

5. Security Considerations

Security issues are not discussed in this document. The scheduling scenario
described here assumes that security is handled at the point of job
authorization/execution on a particular resource.

5. References

[Apples] Application Level Scheduling (AppLeS), http://apples.ucsd.edu/

[ASW99] Alliance Scheduling Workshop, UIUC, February, 1999.

[AUP] Aliance User Portal (AUP), http://aup.ncsa.uiuc.edu/

[Condor] Condor, http://www.cs.wisc.edu/condor/publications.html

[BW96] Fran Berman and Rich Wolski, “Scheduling from the Perspective of the
Application”, Proceedings of the Symposium on High Performance Distributed
Computing, 1996 (also available at http://apples.ucsd.edu/pubs/hpdc96.ps).

[BWF+96] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and
Gary Shao, “Application-Level Scheduling on Distributed Heterogeneous
Networks”, Proceedings of Supercomputing 1996 (also available at
http://apples.ucsd.edu/pubs/sup96.ps and UCSD CS Tech Report #CS96-482) .

[CFK+98] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, and S. Tuecke, “Resource Management Architecture for Metacomputing
Systems”, Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies for
Parallel Processing, 1998 (also available at
ftp://ftp.globus.org/pub/globus/papers/gram97.ps)

[FFK+97] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S.
Tuecke, “A Directory Service for Configuring High-Performance Distributed
Computations” Proc. 6th IEEE Symp. on High-Performance Distributed Computing,
pg. 365-375, 1997 (also available at
http://ftp.globus.org/pub/globus/papers/hpdc-97-mds.pdf).

[FRS00] I. Foster, A. Roy, V. Sander, “A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation, (8th International
Workshop on Quality of Service, 2000) (also available at
http://www.globus.org/documentation/incoming/iwqos_adapt1.pdf)

[GARA] Globus Advance Reservation Architecture,
http://www-fp.mcs.anl.gov/qos/papers/gara_admin_guide.pdf

[GASS] Global Access to Secondary Storage (GASS), http://www.globus.org/gass/

[GFUWG99] Grid Forum Users Working Group, www.gridforum.org, 2000.

[Gridsearcher] Sean Melody and Jennifer Schopf, http://anchor.cs.nwu.edu

[Hotpage] Hotpage, https://hotpage.npaci.edu/

GFD-I.4 July 2001

Schopf Informational [Page 9]

[Nab99] Jarek Nabrzyski, Knowledge-based Scheduling Method for Globus, Globus
Retreat, Redondo Beach, 1999, http://www.man.poznan.pl/metacomputing/ai-
meta/globusnew/index.html

[Legion] Legion, http://legion.virginia.edu/

[LSF] LSF, http://www.platform.com/products/LSF/

[Loadleveler] Loadleveler,
http://www-1.ibm.com/servers/eserver/pseries/software/sp/loadleveler.html

[NWS] The Network Weather Serrvice, http://nws.npaci.edu/NWS/

[PBS] Portal Batch System (PBS), http://pbspro.com

[RLS00] Rajesh Raman, Miron Livny, and Marvin Solomon, "Resource Management
through Multilateral Matchmaking", Proceedings of the Ninth IEEE Symposium on
High Performance Distributed Computing (HPDC9), Pittsburgh, Pennsylvania,
August 2000, pp 290-291. (also available at
http://www.cs.wisc.edu/condor/doc/gangmatching.ps)

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon, Matchmaking: Distributed
Resource Management for High Throughput Computing", Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing, July
28-31, 1998, Chicago, IL(also available at
http://www.cs.wisc.edu/condor/doc/hpdc8.ps)

[SC00] Snell and Clement, "Metascheduling Query and Reservation Interface",
Global Grid Forum Schedule working Group WD 2.2, April 2000,
http://www.cs.nwu.edu/~jms/sched-wg/WD/schedwd2.2.pdf

[Silver] Silver, http://www.supercluster.org/projects/silver/

[Unicore] Unicore, http://www.unicore.de/

[WSH99] Rich Wolski, Neil T. Spring, and Jim Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting Service for
Metacomputing”, Journal of Future Generation Computing Systems, 1999, (also
available at http://www.cs.ucsd.du/users/rich/papers/nws-arch.ps.gz or as UCSD
Technical Report Number TR-CS98-599, September, 1998)

6. Author’s Addresses

Jennifer M. Schopf
Computer Science Department
Northwestern University
1890 Maple Ave.
Evanston, IL 60201
jms@mcs.anl.gov

Copyright Notice

Copyright (C) Global Grid Forum (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.

GFD-I.4 July 2001

Schopf Informational [Page 10]

However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the GGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the GGF Document process must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to practice this recommendation. Please
address the information to the GGF Executive Director.

